
'j FILE. copy (

PROCEEDINGS FROM THE 1990 WORKSHOP ON

ISSUES OF INTEGRITY AND SECURITY

NIN AN ADA RUNTIME ENVIRONMENT
CD

April 3-5, 1990

Orlando, Florida

DTIC
ELECTE f
SEP-06 30

since 1936 I ~~BTIO ThEM A

awasag If

GENERAL INSTRUCTIONS FOR COMPLETING SF 298
The Report Documentation Page (RDP) Is used In announcing and cataloging reports. It is Important
that this Information be consistent with the rest of the report, particularly the cover and title page.
Instructions for filling In each block of the form follow. It Is Important to stay within the lines to meet
optical scanning requirements.

Block 1. Agency Ue Only (leava blank). Block 12a. Dlsibftion/Avlaili AtamAnt.
Denotes public availability or limitations. CiteBlock 2. BeartDate Full publication date any availability to the public. Enter additionalinclud'Ing day moth, and year, Rf available (e.g.I Jan day, month, an ear, tf a e limitations or special markings in all capitals1 8). Must cite at least the year. (e.g. NOFORN, REL, ITAR).

Block 3. Type of Reort and Dates Cnvered
State whether report is interim, final, etc. If DOD - See DoDD 5230.24, Dlstribution
applicable, enter inclusive report dates (e.g. 10 See on Technil
Jun 87 -30 Jun 88). Statements on TechnicalDocuments."

Block 4. litle and Subtitle A title is taken from DOE - See authorities.
the part of the report that provides the most NASA - See Handbook NHB 2200.2.
meaningful and complete Information. When a NTIS - Leave blank.
report is prepared in more than one volume,
repeat the primary title, add volume number,
and include subtitle for the specific volume. On Block 12b. Distribution Code
classified documents enter the title
classification in parentheses. DOD - DOD - Leave blank.

Block 5. Funding Numbers. To include contract DOE - DOE - Enter DOE distribution categories
and grant numbers; may include program from the Standard Distribution for
element number(s), project number(s), task Unclassified Scientific and Technical
number(s), and work unit number(s). Use the Reports.
following labels: NASA - NASA - Leave blank.

NTIS - NTIS - Leave blank.
C - Contract PR - Project
G - Grant TA -Task Block 13.Absta~t, Include a brief (Maximum
PE - Program WU- Work Unit 200 words) factual summary of the most

Element Accession No. significant information contained in the report.

Block 6.Autbr(,s). Name(s) of person(s)
responcibo for writing the report, performing Block 14. SubiazI lrms Keywords or phrases
the research, or credited with the content of the identifying major subjects in the report.
report. If editor or compiler, this should follow
the name(s). Block 15. Number of Pages. Enter the total

Block 7. Performing Organization Name(n) and number of pages.
Adrgnp)Self-6'planhatory."" Block 16. PriceCode Enter appropriate price

Block 8. Performing Organization Rnort code (NTIS only).
Number Enter the unique alphanumeric report
number(s) assigned by the organization Blocks 17. - 19. Security Classifications.
performing the report. Self-explanatory. Enter U.S. Security

Block 9. Sponsorirn/Monitoring Agency Classification in accordance with U.S. Security
Name(s) and Add.rss(es). Self-explanatory. Regulations (i.e., UNCLASSIFIED). If form

contains classified information, stamp
Block 10. Somberinfknonitarinn Aoenc- classification on the top and bottom of the page.Report Number. (If kr~own) -- "

Block 11. Sipplementary Notes Enter Block 20. Limitation of Abstract This block
Information not Included elsewhere such as: must be completed to assign a limitation to the
Prepared In cooperation with...; Trans. of...; To abstract. Enter either UL (unlimited) or SAR
be published In.... When a report is revised, (same as report). An entry in this block is
Include a statement whether the new report necessary if the abstract is to be limited. If
supersedes or supplements the older report. blank, the abstract is assumed to be unlimited.

Standard Form 298 Back (Rev. 249)

I S

REPORT DOCUMENTATION PAGE _M

Oksimst Wd %aK~d1 Ob m ud ~~.11 . ~ k 1

. GENCY USE ONLY (A* Z REPORT DATE S. RPOr TP AND DATES COVERED

I April 1990 Proceedings April 3-5, 1990

''dee'sfrom the 1990 Workhop on Issues of Integrity and
Security in an Ada Runtime Environment

6.AUTHOR(S)

lIT Research Institute

7. PEWORMING ORGANIZATION NAME(S) ANDAOORESS(ES) 8. PERFORNMING ORGANIZATION

REPORT NJIUER

IITRI
4600 Forbes Blvd
Lanham, MD 20706

9. SPONSORINITORING AGENCY NAME(S) ANDADORESS(ES) io. SPONSORINGOWIONIT.. AGENCY

IITRI Ada Joint Program Office REPORTNUMBER

4600 Forbes Blvd R 3E114
Lanham, MD 20706 The Pentagon N/A

Washington, DC 20301-2080

11. SUPPLEMENTARY NOTES

12& DISTRIBUTIOWAVAILABLITY STATEMENT 12b DISTRIUT1ON CODE

Cleared for Public Release, Distribution Unlimited

13. ABSTRACT (MkAWum2OO wo*)

This document provides a summary of the results of the 1990 Workshop on Issues of
Integrity and Security in an Ada Runtime Environment, which was held April 3-5, 1990 in
Orlando, Florida. This section provides a background on the workshop and an introduction
to each of the working groups. Appendix A is a compilation of the position papers that
the conference attendees submitted. Appendix B contains the preliminary review of the

currant Catalog of Implementation Features and Options (CIFO) from a security perspective
The CIFO review, which was held as an evening meeting, was attended by a few of the
workshop participants. Appendix C is a list of names and addresses of all the workshop
participants.

14. SUBJECT TERMS 1S. IUMER OF PAGES

Security, Integrity, Ada RTE, Trusted Computer Base 88
is. PRICE CODE

17. SECURITYCLASIFICATION I.SECURITYCLASFICATON 19. SECURITY CLASWCATION 20. LMTATION OF ABSTRACT

OF REPORT OF THI PAGE OFABSTRACT

unclassified unclassified unclassified

NSN 754001-280-5500 Stdrd For fBP "ax by ANSI 81. 10-l
2 0"1o

PROCEEDINGS FROM THE 1990 WORKSHOP ON

ISSUES OF INTEGRITY AND SECURITY

IN AN ADA RUNTIME ENVIRONMENT

April 3-5, 1990

Orlando, Florida

Sponsored by

liT Research Institute
and

Ada Joint Program Office

Program Committee Working Group Chairs

Mary Armstrong Dock Allen
George Buchanan John McHugh, Ph.D.
Steven Goldstein Charles McKay, Ph.D.
Fred Maymir-Ducharme, Ph.D. Richard Powers
Charles McKay, Ph.D.
Ken Rowe

II

TABLE OF CONTENTS

Acknowledgements v

1.0 INTRODUCTION 1-1
1.1 Background 1-1
1.2 Working Group Organization 1-1

2.0 ADA RUNTIME WORKING GROUP 2-1

2.1 Issues Definition 2-1
2.2 Assumptions 2-6
2.3 Process 2-7
2.4 Identification of Threats 2-7
2.5 Working Model and Interfaces 2-7
2.6 Example of an ARTE 2-9
2.7 Analysis of ARTE Functions 2-10
2.8 Allocation of Security Requirements to a Typical Ada Runtime .. 2-12
2.9 List of ARTE Features to Support Integrity 2-13
2.10 Recommendations 2-14

3.0 APPUCATION OF FORMAL METHODS TO SECURITY AND
INTEGRITY OF A TRUSTED ADA RUNTIME ENVIRONMENT ... 3-1

4.0 ISSUES OF ACCESS CONTROL IN A DISTRIBUTED
ENVIRONMENT WITH PERSISTENT DATA 4-1

APPENDICES

A. POSITION PAPERS A-1

B. CIFO SECURITY REVIEW B-1

C. WORKSHOP PARTICIPANTS C-1
Aceossion For
NTIS QRA&I
DTIC TAB]

Unnounoed 0
Justfioatio-

III Distribution

Availability Codes

Avail a/a-ir
DIst Speolal

LIST OF FIGURES

2-1. Working Model Software Architecture 2-8
4-1. Overview of Working Group's Position 4-2
4-2. Research and Development Issues 4-3
4-3. Requirements Issues 4-4
4-4. Environmental Issues 4-5
4-5. TCB Architecture 4-6
4-6. Hardware and Software Considerations 4-7
4-7. Other Considerations 4-7
4-8. DMLSI Access Controls 4-8
4-9. DMLSI Environments 4-9

LIST OF TABLES

2-1 Interface Summary 2-9

Iv

ACKNOWLEDGEMENTS

The program committee would like to thank the following individuals for their
-" contributions to the workshop by serving as working group chairs and for their

contributions to these proceedings by preparing final reports for their working groups:

Dock Allen
John McHugh, Ph.D.
Charles McKay, Ph.D.

Richard Powers

The program committee would also like to thank all of the participants for their
contributions.

V

Vt

1.0 INTRODUCTION

iThis document provides a summary of the results of the 1990 Workshop on Issues of
"" Integrity and Security in an Ada Runtime Environment, which was held April 3-5, 1990

in Orlando, Florida. This section provides a background on the workshop and an
introduction to each of the working groups. Appendix A is a compilation of the position
papers that the conference attendees submitted. Appendix B contains the preliminary
review of the current Catalog of Implementation Features and Options (CIFO) from a
security perspective. The CIFO review, which was held as an evening meeting, was
attended by a few of the workshop participants. Appendix C is a list of names and
addresses of all the workshop participants.

1.1 Background_.

The objectives of th'499 Workshop, on Issues of Integrity and Security in an Ada
Runtime Environmeni were:

V) + to identify and discuss the security and integrity issues related to the Ada

runtime environment; ' L

Sto bring together and create some synergy among the security/integrity

and Ada specialists in order to adequately address security and integrity
issues related to the Ada runtime environment. - --

The workshop was jointly sponsored by lIT Research Institute and they Ada Joint
Program Office.

1.2 Working Group Organization

At the onset of the workshop participants were asked to participate in one of the
following working groups:

4.

1. Ada Runtime Environment

2. Applications of Formal Methods to Security and Integrity of a Trusted Ada
Runtime Environment

3. Issues of Access Control in a Distributed Environment With Persistent Data.

The Ada Runtime Working Group, led by Ms. Dock Allen of Control Data Corporation

and Mr. Richard Powers of Texas Instruments Defense Systems and Electronics Group,

1-1

addressed the security and integrity issues directly related to the Ada runtime
environment and reviewed the most recent CIFO entries with respect to security and
integrity concerns.

The Applications of Formal Methods to Security and Integrity of a Trusted Ada RL'ntime
Environment working group, led by Dr. John McHugh of Computational Logic, Inc.,
discussed the applications of formal methods to security and integrity of trusted Ada
runtime environments.

The Issues of Access Control in a Distributed Environment With Persistent Data working
group, led by Dr. Charles McKay of the University of Houston at Clear Lake, addressed
the issues of access control in a distributed environment with persistent data.

The three working groups were each composed of approximately eight representatives
from Government, industry, and academia.

1-2

2.0 ADA RUNTIME WORKING GROUP

The Ada Runtime Working Group focused on the issues of security and integrity that
are a result of Ada runtime environments, as opposed to the general issues of security
and integrity that apply to all languages. The focus was primarily on the runtime itself,
rather than the entire Ada language or pre-runtime tools.

The working group contained 10 participants, representing both the government and
industry. The participants were:

Dock Allen (Control Data),
Edward Beaver (Westinghouse ESG),
George Buchanan (lIT Research Institute),
Michael Diaz (Motorola GEG),
Clarence "Jay" Ferguson (National Security Agency),
Ed Gallagher (CECOM Center for Software Engineering),
Mark Kraieski (McAIR/LHX),
Nina Lewis (Unisys),
Fred Maymir-Ducharme (lIT Research Institute),
John Perkins (PRC),
Richard Powers (Texas Instruments),
Ken Rowe (NSA/NCSC).

The working group covered the following topics:

Issues and Assumptions
Definition of a Process for the Workshop
Identification of General Threat Types
Definition of a Working Model and its Interfaces
Analysis of the Security Issues for Typical Ada Runtime Features
Allocation of Security Requirements to a Typical Ada Runtime
Ada Features Required to Build Integrity Into Applications Recommendations

2.1 Issues Definition

At the beginning of the workshop, the group identified a set of issues that were
significant with respect to integrity/security/Ada runtimes. Although there was not
sufficient time to address most of the issues, we present them as background. Having
identified the issues that the participants were concerned with, we focused thp rest of
the workshop on the Ada Runtime issues.

How do security and integrity issues differ across the domain of systems?

2-1

The domain ranges from single/stand-alone type processor system to large,

distributed systems of main-frame class machines.

How are security and integrity requirements to be applied across this range?

Compiler trustedness:

How can the trustedness of a compiler be established, so that the code
generated by the compiler can be trusted?

Controlling development of the Ada Runtime:

One major question was how 'trusted" the Ada runtime had to be. This is
related, in part, to the security boundary issues, and whether or not the Ada
runtime is shared between subjects. Another major concern is using a
commercial Ada runtime. If the Ada runtime was developed outside of a
particular program's control, how can its trustedness be established?

If there are packages -or services that should be restricted, how does the
pre-runtime (compilation system and support tools) enforce these restrictions?

Many of the packages needed to build embedded systems can interfere with
system integrity if used unwisely; yet these are needed to deploy some real-time
systems. Compilation systems that support limited access to such packages are
clearly needed.

Protecting classified data from disclosure:

If data has been passed on the stack, or has been placed on the heap, the data
image can persist after the memory is released. Some form of scrubbing of
released stack and heap space may be required.

Protection of classified algorithms:

Protection from disclosure should include code, as algorithms can be classified.

Control over the placement of classified Information:

To support secure operation, the placement of algorithms and data in memory
must be controlled. For code, and data defined at compile time, this is an issue
for the Compilation system and its tools. However, the runtime controls

2-2

placement of dynamically allocated data. This may conflict with security needs.

Elimination of unused code:

.* Code that is never executed must not be loaded for certain classes of systems.
This has implications for the runtime, as well as for the compilation; the runtime
features which are not used should be configured out.

Authentication of code:

Code should be authenticated when it is loaded; this is not typically an Ada
runtime responsibility. The code supplied by the Ada vendor may require
authentication, including the Ada runtime itself.

Security Boundaries:

A major issue discussed in the working group was where the boundaries
between subjects is in a secure system. Part of the group recommended that
the boundary be an Ada program, so that a secure multi-programming
environment could be built to enforce access controls.

Another part of the group felt that security must exist within an Ada program,
and that there were some applications, such as communication servers, where
the expressiveness of Ada tasking is required to produce a good application.
In this example, the security boundary should be at a lower level than the Ada
program, perhaps between tasks.

Yet a third party indicated that a hybrid approach was needed. Clearly, there
was no consensus on this issue. There was .some agreement that the
multi-programming approach would work; there was not consensus that it would
be sufficient.

If security boundaries are lower than the program level, what are they?

How does an Ada task relate to a process or subject?

What is the trusted computing base (TCB) with respect to the Ada Runtime?

How much of the TCB, if any, is in the Ada Runtime?

Does the Ada Runtime run "on top of' a TCB, or does some portion of the TCB
include some of the Ada Runtime functions. This is in part related to the

2-3

question of the security boundaries. In addition, the typical size of Ada Runtimes
would seem to preclude having the entire ARTE be a TCB.

What threats should the Ada Runtime be responsible for handling?

This relates, in part, to the issue of where the security boundaries are. It also
includes questions of how the Ada runtime can protect the system from
malicious and intentional compromise or corruption, and what vulnerabilities may
arise from the runtime itself.

When the environment includes an Ada runtime and an operating system, what
additional issues arise?

An Ada Runtime implemented "on top of" an operating system generally allocates
some of its functionality to the OS.

How does a TCB fit into this relationship?

Does Ada tasking present security/integrity issues?

The size of the Runtime to support Ada tasking is a concern, with respect to
code validation. Preservation of the * (star) property among tasks of different
levels may present problems.

What denial of service issues are of concern in Ada?

Most of the issues identified involved some form of resource gluttony or abuse:

A task/program can consume the heap, which will prevent other tasks/programs
from executing;

A task/program can consume the CPU;

A task/program can cause fragmentation of the heap;

A task/program can force excessive garbage collection by fragmenting the heap;

A task/program can consume channel/bus capacity;

An Ada runtime is allowed to keep a pointer for each terminated task (instead
of one common pointer), which can consume the heap for long-running
programs.

2-4

What should the runtime/TCB do in response to a security violation?

In an embedded system, terminating the program may not be an acceptable
response due to mission requirements, whereas this might be appropriate in a
mainframe environment.

How can Ada programs access low level hardware features without introducing
security/integrity problems?

Ada permits programs to access interrupts, when supported by the runtime, and
to access low level hardware interfaces. This allows applications to do functions
which are unique to a particular system, such as providing device drivers for
special-purpose devices.

Can the runtime mediate this access such that the application can provide these

low level service without compromising system security and integrity?

Is the Ada Runtime involved in encryption?

If encryption is an application, from the runtime perspective, how can that
application be trusted if the Ada runtime is not trusted?

How does reconfiguration of processor resources impact system integrity and security?

If an Ada program spans processing resources, what impact does
reconfiguration have on the integrity and security of the system?

The group noted that the Ada LRM says nothing about a partially functional Ada
program.

How do tailorable Ada runtimes affect system integrity and security?

The need to keep Ada runtimes small comes from several pressures. In addition
to saving memory, which is still a major concern in some systems, the smaller
Ada runtime is more amenable to verification.

How can the integrity and security of an Ada runtime be insured, in the face of
arbitrary subsets of functionality?

2-5

How can security requirements be verified in complex systems?

Given that it is not possible to perform formal proof on a reasonable Ada runtime
environment, what other techniques are available to validate that system security
requirements have been met?

What features are required in an Ada runtime such that a distributed security policy
can be implemented on top of it?

Distributed system services are often built upon, or integrated into, an Ada
runtime. If these services have security requirements, what features does the
Ada runtime need to support?

This list just scratches the surface of the security and integrity issues. The working
group was not able to do more than list most of the issues. The remainder of the
workshop was spent on analysis of the runtime, and its impact on integrity and security.

2.2 Assumptions

1. The Ada compilation system(s) can limit programmer access to software
packages and interfaces. This assumption allowed the group to be less
concerned with interfaces that may be necessary to portions of the application
builders, but that introduce security/integrity risks.

2. Trusted interfaces will validate requests.

3. The underlying hardware has sufficient support to build a trusted system. This
assumption allowed the group to sidestep the issue of what hardware support
might be required.

4. The group was not concerned with protecting erroneous "subjects" from
damaging themselves.

5. If multiple programs 'with" a package, they get separate copies. This assumption
allowed certain assumptions to be made about a multi-programming approach
to supporting security and integrity.

6. The group was not concerned with programs which span processors.

2-6

2.3 Process

The working group used a process which involved adopting a working model for the
"" system, a typical Ada runtime architecture, and evaluating the security and integrity

issues within this frame work. Since it would not be possible to do a thorough analysis
.. of the domain, the group used the strategy of using representative sets of issues

applied to working models. The steps followed were:

1. Identify a set of representative system threats;
2. Adopt a working model for the architecture, Ada Runtime, and TCB;
3. Adopt a working model for an Ada Runtime;
4. Identify threats that originate in, or are exacerbated by, the ARTE;
5. Identify threats that are handled by the ARTE;
6. Determine the requirements that security and integrity would levy on the ARTE;
7. Prepare a set of recommendations for future research, analysis, and

prototyping.

2.4 Identification of Threats

This activity identified a subset of system threats, in order to provide a focus for the
remaining analysis. The threat countermeasures identified were:

Protection of data and code from:

1. Disclosure of classified information;
2. Corruption;
3. Loss;
4. Intentional or inadvertent denial of service;
5. Sabotage or errors during development of the applications of the system

software, including the ARTE;
6. Presence of unauthorized code or data;
7. Protection of the execution environment, including the hardware state and the

Ada runtime state;
8. System level issues, such as encryption.

2.5 Working Model and Interfaces

In order to explore the issues of Ada and security, the working group adopted a
working model for the TCB. This is not the only possible model, but serves as a
framework for discussion. In this model, it is assumed that the functions of the TCB
are provided by a combination of hardware, Ada Runtime Environment (ARTE), the
extended runtime library (XRTL), and the application.

2-7

We assumed that the hardware provided sufficient support for secure a operation; this
usually means that AT LEAST a user/kernel separation is maintained, or that a capability
based architecture is used.

The ARTE provides the runtime services needed by Ada, such as tasking and memory
management. The model assumes that much of the TCB is implemented within, or
underneath the ARTE. The model does not assume any particular relationship between
the ARTE and the TCB, except that they appear as a unit to the XRTL and application
software. If the system is built upon an existing operating system, this would also be
considered part of the ARTE, from the perspective of the model.

The XRTL includes those functions typically thought of as system services, such as I/0
drivers. In some systems, support for distributed processing is an XRTL feature.
Many runtime extensions for real-time software, such as specialized memory managers,
can at.so be XRTL services.

The model allows for the case where some of the TCB functions are provided by XRTL
services, and even by the application itself. The model is illustrated in Figure 2.5-1.

Application

XRTL

ARTE

TCB ,D

Logical TCB

Figure 2-1 Working Model Software Architecture.

In order to evaluate the Ada Runtime using this model, we developed a list of the
interfaces in the model, along with a definition of what each interface consisted of. The
interfaces are summarized in TABLE 2-1.

2-8

TABLE 2-1
INTERFACE SUMMARY

Application to XRTL The XRTL consists of Ada packages which provide
system-level services for the application; the ARTEWG CIFO
defines several XRTL services. The XRTL interface is defined
by the packages specifications for those services. The
interface is explicit, consisting of Ada statements which
invoke the services.

Application to ARTE The ARTE interface is implicit; the vendor defines the
interface, and the compiler generates calls to the runtime
in response to Ada statements in the source. The LRM, plus
any vendor supplied pragmas represent the interface to the
ARTE.

Application to Hardware This interface is the Instruction Set Architecture (ISA) of the
system. The application access is via code emitted by the
compiler, and is often limited to those instructions and
addresses that are available in "user mode", in systems which
have a user/kernel separation in hardware.

XRTL to ARTE This is the same as the Application to ARTE interface. Some
additional packages and pragmas may be provided to the
XRTL, on a limited basis, to provide access to lower level
runtime interfaces.

XRTL to Hardware This is the same as the Application to Hardware interface,
except that portions of the XRTL may run in "kernel mode",
and have access to the complete ISA.

ARTE to Hardware This is the same as the Application to hardware interface,
except that much of the ARTE will execute in "kernel mode".

2.6 Example of an ARTE

The working group developed a list of functions typically supplied by an ARTE. This
list was then used to analyze parts of the ARTE (and functions of Ada) that might be
considered a risk to security and integrity.

Because the group had not defined where the security bounds should be drawn (i.e.

2-9

what is a subject?), the first pass through the list assumed that tasks within a single
program might be multiple subjects. This led to the numbered list that follows. The
second pass through the list assumed that multi-programming was used, and that
each Ada program was a subject. This removed several issues. The remaining issues
are indicated with an asterisk ("*' in the list. Finally, a pass was made through the
list to decide which of the remaining issues might be removed with an implementation
of multi-programming that better comprehends the security/indicated issues. The items
that remained after this process are indicated by a hash mark in front of the asterisk

2.7 Analysis of ARTE Functions

Typical functions of the ARTE and possible security/integrity problems/issues:

ARTE 1 - Ada Exception Management

Functions: Raising exceptions and propagating them to applications.
Problems and Issues:

1. Raising an exception in a rendezvous can affect the execution of another task.

2. Anonymous and misleading exceptions can cause several problems.

ARTE 2 - Storage Management

Functions: Support for the allocation ('new") and deallocation
(UNCHECKEDDEALLOCATION) of user data. Responsible for some portions of stack
management.

Problems and Issues:

*3. Heap Creep (fragmentation due to allocation/deallocation leading to denial of
service).

*4. Gluttony (allocating all available memory).
*5. Object reuse (i.e. support needed for scrubbing).
#*6. Loss of CPU time due to excessive garbage collection (due to fragmentation).
*7. Stack Scrubbing.
#*8. Register Scrubbing.
#*9. Address Space Management.

ARTE 3 - Task Management

Functions: Task creation, activation, termination, completion, abortion. Support for

2-10

various forms of rendezvous.

#*10. CPU Gluttony.
11. Abortion (of a visible task).
12. Abortion may not be immediate/timely.
13. Rendezvous. Many opportunities for problems exist when two tasks

communicate.
#*14. Task Gluttony (i.e. creating tasks until the system can no longer support and new

tasks).
#*15. Refusal to terminate/complete.
16. Priority inversion.
17. Priority inheritance during a rendezvous.

ARTE 4 - Time Management

Functions: Support for the delay statement. Support for package CALENDAR.

#*18. Delay implies a covert timing channel.
#*19. Numerous short delays can tie up the ARTE handling delay completion, and

lead to a denial of service.

ARTE 5 - Input/Output

Functions: Support for predefined I/O packages.

#*20. A file system implies many security/integrity vulnerabilities.
*21. Buffer reuse/scrubbing.

#*22. LOW-LEVEL 10 implies access to underlying hardware devices.
*23. Buffer flushing.
#*24. Channel/device gluttony.
*25. Buffer gluttony.
26. Devices/files/buffers could be used as covert channels.

ARTE 6 - Initialization

Functions: Responsible for elaboration, elaboration checks, and system initialization.

#*27. Hardware initialization.
#*28. Memory scrubbing.
29. Elaboration failures can affect all tasks in a program.

2-11

ARTE 7 - Shutdown

Functions: Concerned with program completion.

#*30. Scrubbing program resources upon exit.
#*31. The inability for a main procedure to abort itself (and all of its tasks.)

ARTE 8 - Compiler Support

Functions: Compiler dependent routines.

#*32. Must be evaluated on a compiler by compiler basis.

ARTE 9 - Interrupt Management

Functions: Responsible for handling machine interrupts/exceptions.

#*33. Interrupts being disabled/masked for too long can leave to denial of service.
#*34. Interrupts can be used as covert channels.

2.8 Allocation of Security Requirements to a Typical Ada Runtime

Based on the analysis conducted, the working group allocated the following security
requirements to the ARTE:

Detect, prevent, recover from, and report various forms of gluttony, including

CPU and memory.

Manage the address space protection features of the hardware;

Implement scrubbing/object reuse for the heap, stack, registers, external storage
(where the ARTE provides the I/O services for that storage), and program
memory;

Provide trusted device services, including file management;

Monitor covert channels which are involve the runtime, such as covert timing
channels in the Ada delay;

Provide a means for an Ada main program to terminate itself or be aborted;

Detect, report, and recover from deadlock and starvation;

2-12

Support a trusted audit log; this could be implemented by the ARTE; alternately,
it is implemented outside of the ARTE and used by the ARTE. This was felt
to be an implementation decision.

These do not represent a complete set, by any means, but serve as an example of
what would be required.

2.9 List of ARTE Features to Support Integrity

The group next discussed a list of ARTE features that could assist in building
high-integrity applications. The ARTE could export interfaces to all programs to:

1. Define a memory partition within a program.
2. Clear memory (heap, stack, and registers) at certain times. This would allow

the program to control when scrubbing occurred.
3. Initialize memory.
4. "Freeze" memory (i.e. make it read-only) at some point during execution. This

would allow the program to calculate values, then insure then they were not
accidentally changed.

5. Report stack history (trace back) at runtime.
6. Log exceptions.
7. Detect a read of an undefined object.
8. Terminate/abort the main program. Currently, the main may unable to terminate

because other tasks are still running.
9. Umit the view of the standard I/O packages. Currently, a user gets all of the I/O

package, such as text io, when the package is with'd. For integrity reasons, it
would be desirable to limit the capabilities which a particular user obtained.

Several issues were also discussed that were determined to be more of a toolset issue
than an ARTE issue. The toolset could aid the application builder by:

1. Allowing total control over elaboration order.
2. Allowing total control over parameter passing mechanism. This eliminates an

area of unpredictability in the program behavior when non-scaler objects are
used as parameters.

3. Allowing control over order of evaluation of expressions.
4. Umiting the use of language features for parts of a program.

2-13

2.10 Recommendations

1. Evaluate the feasibility of using host tools to check programs for secure and
high integrity use of Ada.

2. Evaluate the ARTEWG CIFO from a security and integrity perspective.
3. Propose and evaluate alternate TCB software architectures.
4. Propose and evaluate alternate approaches to subject boundaries (e.g. programs

versus lower than programs, functional versus lexical).
5. Evaluate where current compilers do not efficiently support Ada features which

are valuable for security and integrity.
6. Identify hardware support needed for or beneficial to proposed secure software

architectures.
7. Develop guidelines for use of Ada in secure/high integrity systems.
8. Examine and recommend approaches for tools to control use of Ada/XRTL

features.
9. Continue to evaluate/identify/elaborate security-related ARTE and Ada issues and

solve the problems.
10. The group strongly supports any Ada 9X effort to provide more predictability

and formalism for Ada in the interest of security.
11. Foster research addressing formal verification of concurrent Ada.
12. Develop guidelines for CIFO use on secure/high interest systems.

2-14

3.0 APPUCATION OF FORMAL METHODS TO SECURITY AND INTEGRITY OF
A TRUSTED ADA RUNTIME ENVIRONMENT

Being formalists, even if only temporarily, or by osmosis, we feel a need to question
some basic premises. It is unclear to us that there are specifically identifiable Security
and Integrity issues associated with run time environments for Ada, per se. We see a
variety of issues associated with Ada code that becomes part of the TCB, whether this
code represents a trusted application, a RTS, or an operating system kernel. We feel
that the development of lengthy lists of very specific issues indicates a failure to
comprehend the overall problem. Accordingly, the Formal Methods group has
concentrated on process.

We believe that our results establish a framework that can be used to place the detailed
issue lists of the other working groups in an appropriate context. Before presenting
framework, we will discuss a few general issues. The report continues with an outline
of the research issues that provide the bulk of the section. The research issues
constitute framework mentioned above. These are followed by a couple of issues that
are seen as technology transfer rather than research. The section concludes with a
roadmap that outlines a research agenda and a position statement on the way in which
the agenda should be executed.

General Issues:

First, we would like to acknowledge the participation of the members of the working
group (listed below). Without their efforts, this work could not have been developed.
As group leader, I (John McHugh) accept responsibility for any sins of omission or
commission.

John McHugh, (Computational Logic, Inc.) *Group leader
James Alstad, (Hughes Aircraft Company)
Paul Cohen, (Martin Marietta)
Steven Goldstein, (lIT Research Institute)
Ann Marmor-Squrires, (TRW)
John Perking, (DRC)
John Shultis, (Incremental Systems Corporation)

We are less than comfortable with the conceptual basis of the
workshop. Our collective experience leads some of us to feel that, while we understand
the TCSEC reasonably well, we are not completely comfortable with it as a basis for
a formalization of security in a real sense. With an increasing tendency towards the
formulation of mission-specific security policies and the notion of trusted applications,

3-1

we feel that a more flexible and general framework is appropriate as a formal basis.
Because much of the discussion of the workshop comes into the category of trusted
applications, we feel that it is appropriate to raise this question here. We are even less
comfortable with the definition of integrity. We adopted both a majority and minority
definition.

Integrity is the assurance that the response of a system to a stimulus is in
conformity with the system specification.

This is so comprehensive as to be equivalent to functional
correctness. The minority definition is an attempt to restrict the scope to computer and
software issues.

Integrity is the agreement of system outputs with the specification.

A third definition was suggested by Steve Goldstein. This couches integrity in terms
of data corruption with the notion that
unauthorized modification reduces the integrity of the data. All of these are distinct
from hierarchical notions of Biba and others.
To me, none of these are particularly satisfying. Integrity is not a binary quantity, but
we seem to lack a metric for quantifying
integrity. There is no basis for the establishing the integrity of externally developed data
or for specifying the effects of software on the relationship between the integrity of input
and output data. There is no basis for establishing the integrity metrics for software.

In the discussion that follows, the following definition is used to define formalism.

Formalism is an unambiguous expression of the paradigm and vocabulary that
define a semantic model.

The following provides a list of research issues and a basis for categorizing issues:

The following are research Issues.

I. What methodologies are suitable for using formal methods in the development
and maintenance of trusted Ada runtime systems?

A. What are the concepts that need to be axiomatized?
Partial answer - rts sensitized
multi-processing
real-time
Inter-program communication
(this list needs S & I concepts added)

3-2

B. What is a good formal language for expressing security and integrity
properties?

Position: The language must cover, at least,
execution environment and Ada dynamic semantics.

1. Is a logic more expressive than first order logic
desirable?

2. How can inherent and/or deliberate ambiguities and
consistencies in Ada be expressed in the turmal
language?

C. What are the appropriate paradigm and vocabulary?
Ontology?

1. Do we need an execution model as well as an Ada
level model?
Position: Yes

a. What is an appropriate vocabulary for
specifying an execution environment?

b. What is an appropriate vocabulary for
specifying an Ada dynamic semantics?
Position: If these vocabularies are
different, there will be consequences to
investigate. The investigation will need
to consider both domains.

D. What are appropriate Formal Methods for Security and
Integrity in Ada.

E. What is a formal language that flows down well into
system/software implementation languages such as Ada.

F. What tools are required to support the above methods and
methodologies.

11. Are there RTS-specific issues?
Position: We feel that TCB specific issues exist that affect the RTS or even
applications if they are part of the TCB. There are no RTS issues, per se.

III. What is the relationship between Application Security and Integrity and the
RTS?
Position: This question is addressed with the "Onion Skin" diagram with
appropriate overlays.

IV. Is there an incremental approach to the development of formalisms, methods,
and tools?
Position: Yes

3-3

A.What useful short term research results can be obtained through incomplete
and/or approximate formalisms?

Position: E.g, How we deal with ambiguous and incomplete run time models?

The following are technology transfer Issues.

V. How should Formal Methods be introduced into practice.

VI. What we can say today about dealing with the informality of existing languages,
systems, and specifications?
Position: Use safe subsets. Work has been done oni this by TRW (ASOS), ORA
(Penelope), CU (AVA), NPL (Low Ada).

A ROADMAP FOR RESEARCH

lvv

IVV

L.A 1.B I.C I.D I.E L.F

POSITION

Incorporation of formal methods in software engineering practice requires a cooperative
effort involving practitioners in the design and engineering of formal methodology and
greater understanding and appreciation of software practice on the part of formal
methods researchers.

We, therefore recommend a multi-threaded approach involving teams of researchers
and practitioners, preferably situated in the application development environment, to
negotiate approximate solutions of real utility and strategies for extending them to
progressively more complete solutions.

3-4

4.0 ISSUES OF ACCESS CONTROL IN A DISTRIBUTED ENVIRONMENT WITH
PERSISTENT DATA

The following individuals were members of the Issues of Access Control in a Distributed
Environment With Persistent Data working group:

Charles McKay * chair
William R. Worger (US Army)
Sue Le Grand (Planning Research Corporation)
Jeffrey L Grover (Georgia Tech Research Institute)
Capt. Robert Pierce (US Air Force)
Ann Maymor-Squires (TRW)

The final report of this working group was divided into three parts: the context of this
workshop and working group, the major issues addressed by this working group, and
their recommendations.

The context of this workshop and working group is introduced in Figure 4-1. As
shown, the external oversights and other stimuli that synergistically affect national issues
of policy, standards, and research and development will impact the system security
policy for any project. (A project is indicated by the rectangle in the middle of the
figure.) Just as the perspectives of both users and acquisition personnel are influenced
throughout the project life cycle by the system security policy adopted for the project,
these perspectives also reflect the influences of the vendors and supply communities
(shown at the bottom of the figure) that provide a portion of the stimuli (shown at the
top of the figure). Specifically, the compilers, runtime environments, and other tools and
components provided by these vendors and supply communities will directly and
indirectly influence the expected capabilities and delivered items throughout the project's
life cycle.

4-1

EXTERNAL OVERSIGHT/STIMULI

NATIONAL/STDS/R&D
POLICY

SYSTEM SEC. POLICY -- - -

ACN *----------- USERS

* REQ-4SPEG-'+IMP-4T&E-4 O&M/

EXPECTED CAPABLE
CAPABILITIES ITEMS

COMPILERS/RTE/MODULES...

I I
VENDORS/SUPPLY COMMUNITIES

Figure 4-1. Overview of Working Group's Position.

The context of this workshop reflects issues at the top of Figure 4-2. In particular, the
workshop focused on the research and development issues that might facilitate real
progress in future projects of national importance. This working group focused on the
capabilities needed from the vendor and supply community that are unlikely to be
available in a timely fashion unless these research and development issues are properly
addressed.

4-2

EXTERNAL OVERSIGHT/STIMULI

I KEN

IONA/STDS/R&D

S-YSTEM SEC. OI

ISSUES

ACQ - -----\------- ----- ----- - USERS

-T TT CIoT T TT
APABILI E ITEMS

FORMAL COM1PILERS/RTE/MODULES...
I I

VENDORS/SUPPLY COMMUNITIES

Figure 4-2. Research and Development Issues.

The issues of access control in distributed environments were considered across a
number of dimensions. As shown in Figure 4-3, the functional requirements of a project
must be balanced against the constraints imposed on the solution (i.e., nonfunctional
requirements). In turn, these issues must be balanced between the application software
(responsible for the management of its own, unique services and resources) and the
underlying system software (responsible for managing all services and resources shared
across multiple applications and users).

4-3

FUNC REQ NON FUNC REQ

AU. S (Mng's Unique Serv.
& Resources)

Sy.w._S (Mng's Shareable
Serv. & Resources)

Figure 4-3. Requirements Issues.

Figure 4-4 reflects the mapping of the Figure 4-3 concerns across a succession of
target, integration, and host environments-each of which can be distributed. The
semantics of access control in distributed target environments (where applications are
deployed and operated) must be much richer than those of the current runtime
environments iN future projects are to satisfy their increasingly distributed and critical
missions. In turn, this semantically rich, runtime environment of the target system will
require enhanced support from the integration environment where final verification and
validation of the target software is performed and the management of monitoring,
advancing, and regressing the target environment baselines is performed. The
combination of requirements for enriched runtime semantics among the target and
integration environments impacts the requirements on the host environment where
application solutions are proposed, developed, and sustained. Specifically, the ability
to support dynamic, multilevel security and integrity in an incrementally evolving,
distributed target environment requires access control semantics that are not found in
today's systems and that must be developed and sustained in host environments and
preserved across the integration environment.

4-4

HOST 4 -/ TARGET

ENVIR. V X -4 4 ENVIR.

V 'I-NTEG + +
NENVRR.

ISSUES
Tech - N Mgt

SPECTRUM

Figure 4-4. Environmental Issues.

The two parts of Figure 4-5 introduce the issues of a trusted computer base (TCB)
which extends across portions of the hardware, the Ada runtime environment (as
prescribed by the language standard), the extended runtime library (legal extensions
such as those proposed in the ARTEWG CIFO*), and parts of the application. The

" right side of the figure extends these concepts to explicitly - identify collections of
processors, their individual kernels, and the supported applications. The TCB for such

- distributed systems would include the firewalled portions of the applications, supporting
portions of the distributed kernel, and those individual processors and their kernels that
are needed to support the dynamic, multilevel security and integrity (DMLSI)
requirements of the applications.

*ARTEWG CIFO: Ada Run lime Environment Working Group - Catalog of Interface
Features and Options.

4-5

"" APPLICATION

".XRTL. DIST K

"",.ARTE..
". "K K K K K

HARDWARE p P P P P P

Figure 4-5. TCB Architecture.

The working group also considered the multidimensional issues involved in mapping theconcerns depicted in Figures 4-1 through 4-4 to considerations of hardware, software,cri"iclity and sensitvity, and time aAd space (see Figures 4-6 and 4-7). In particular,hardware considerations extend through the concerns of processors, buses, and theshared memory and devices of multiprocessor clusters to their interactions with otherclusters via local area and wide area networks. The software considerations begin withthe requirements for single processor kernels and extend through the multiprocessorand distributed kernels to distributed operating system libraries, configuration control,shared communications services and resources, shared information services andresources, and the distributed applications themselves. The concerns for criticality andsensitivity as well as temporal and spatial issues result in configurations which possessvarying degrees of confidence and trust. In particular, the configurations reflectjudgments of the system's logical components, physical components, and theirmVp ngs. Unfortunately, the research and development advancements which aresorely needed to resolve these issues cannot be reasonably expected to emerge fromany one or two of the affected constituencies in government, industry, and academia.Instead, only a joint commitment is likely to have a chance to succeed in the face of
so much complexity.

4-6

MAPPING CONSIDERATIONS

HARDWARE CONSIDERATIONS SOFTWARE CONSIDERATIONS

WAN DIST AP SOFTWARE
LAN DIST INFO SERV & RES
MULTI PROC CLUSTERS DIST COMM SERV & RES
PROCESSORS DIST CONFIG CONTROL
BUSES DIST RUNTIME/OS
SHARED MEMORY & DEVICES LIBRARIES

KERNEL, MULT PROC
KERNEL, SINGLE PROC

FUNCTIONAL REQUIREMENTS & NON-FUNCTIONAL REQUIREMENTS
CRITICALITY & SENSITIVITY

TIME & SPACE

Figure 4-6. Hardware and Software Considerations.

CONFIDENCE & TRUST = F (ABOVE CFG'S

ABOVE CFG'S = F (LOGICAL COMPONENT AND PHYSICAL COMPONENTS
AND THEIR MAPPINGS)

AUDIENCE & PURPOSE

GOVERNMENT INDUSTRY ACADEMIA

COTS CUSTOM DEV RESEARCH

STANDARDS POLICIES

Figure 4-7. Other Considerations.

4-7

Figure 4-8 maps the preceding issues to the heart of the problem of DMLSI access
controls in large, complex, distributed systems. Subject objects are processes
representing application users in requesting the underlying system to provide the
requested access to the designated target objects. The capabilities of these subject
objects is intended to be a function of both the roles that may be assumed by the user
and the views of the target objects that are permitted to the user in these roles. Often,
the n anagement of this subject object domain is separately vested from the
management of the target object domain and the underlying distributed system of
shared services and resources. Thus, the subject object with a given set of roles and
views may prepare a requesting message for the destination site containing the target
object. Assuming that the current context of the underlying system permits (e.g., no
emergencies or overloads exist when the request is submitted by the subject object),
the delivered message is checked in the target environment against the required access
rights of the target object. If the capabilities of the subject match the required access
rights of the target and the underlying system is prepared and able to support the
requested access, then the request is honored.

SUBJECT MSG: SO TO TO, CONTEXT, TARGETOBJECT REQ SERVICE & RESOURCES, OBJECT

* VIEWS CONSTRAINTS, CAPABILITIES -ACCESS
OES JRIGHTS

DIST.SYSTEM

ACCESS CONTROL

Figure 4-8. DMLSI Access Controls.

Figure 4-9 illustrates the mapping of the preceding concerns to the intended DMLSI
environment. For example, distributed application 'A', part 1 of 3, might be the subject
requesting access to a target object resource managed by the second of the three
parts of this distributed application. When the subject object prepares and submits the
requesting message to the underlying distributed kernel (i.e., the system software), it

4-8

can be carefully monitored by background software that leverages the known semantics
of the states and sequences of state transformations that are legal for the distributed
application. Assuming no fault instance from a predetermined fault class was detected
by this monitor, the message may be forwarded to the site of the intended target
object. Here, the access rights required for the local target object are compared to the
request prepared by the remote subject and the system software prepared meta
information on the capabilities of the roles and views of the subject. A satisfactory
match of subject capabilities, system context of operation (e.g., normal vs emergency),
and target access rights may result in the satisfaction of the authorized-and-possible
request.

SCENARIO

Pt I of 3 Monitor DAp B' DAp 'A' MDAp 'B'
Pt4of5 Pt 2 of 3 Pt 9 of 10

DIST. KERNEL

HW **"* • - HW

Figure 4-9. DMLSI Environments.

The following recommendations were developed by the working- group in response to
the preceding context and issues.

1 .Evolve a national, Conceptual Reference Model (CRM) for runtime environments
to support mission and safety critical applications in distributed environments.

4-9

The CRM should respond to at least the issues addressed in the preceding figures.

2.As the highest national priority for the use of the CRM, specify and develop the
interface set of the distributed kernel.

The CRM interface set should support a 'single site image'.

Government contracts should follow for the development of proof-of-concept
implementations, validation test suites, etc through formal models and methods
for the distributed kernel and distributed applications.

3.Similar government contracts should follow for CIFO's (See the ARTEWG
footnote.) of the: distributed information services, distributed communication
services, distributed configuration control services, and distributed operating
system services.

4-10

APPENDIX A

POSITION PAPERS

A-1

This appendix contains position papers from those workshop participants who agreed
to have their position papers published in these proceedings.

A-2

Architectures for Secure Ada Runtime Support

Li.d. 1. Harion
Nina Lewis

Unisys Corporion
5151 CuaninoRuiz

Camanilo. CA 03010

January 24. 1990

ABS7RACT

This paver addresses security issues relased to Ada runume suppot Specifically,
we caamine ar.hiuxz-l approaches to providing usted nume support. and the result-
ing requtriments placed on the development environment. Two altemnbve approaches
for runtime support are presented and ea:mnmed: private Ada Runtime Systems. one for
each application, and Shared Ada -..name Systems, which are shared by several or all
applicions. Key security requirements. suc, as protection of the runume library in the
development environment and design of a security architecture in the operational
envrnment, are examined. 3oth the Pnvate and Shared av'proach alternauves seem
feasible, but one may be preferred for a specific operational system.

L Introduction

This paper reports on our invest,..aton of s=c-ty. issues related to Ada runuine support. spanning
both development and oper,onal enviunments. In 1 shows how the Ada Runime Librry in the
deveiopment environment is t-ansiormed into the Runtme Sysrtn in the operational environment. ane how
the source pr o'm is iransfored into a compiler-en --- ed applicaion program. Whether the oeratonal
system is able to prote its assets depends in part on the choice of protection mechanisms, but also an E
cormct implementation of those mechanisms. An appropriately chosen security policy for the development
environment will increase suance that the operational system mechanisms are impinented corretiy.
Thus. a key security issue in the development environment is protection of the Ada Rumume Library, so we
examine the need to establish and maintain the integrityl of the Ada Runume Lbrary. A key secitry issue
in the operational environment is designing the arhirecuure of the virtual m=hi presented to the applica-
ton.

The paper is organized in four sections. Since the security requirements of the operanonal environ-
ment should drive the security requwrems of the development environment. we first present operational
req mers in Secton Two by esiining how the Ada Runame System can be a odated within a
usted system that must provide :ecumity promuoa. Seemion Three then looks at requirements placed on

the development environment by the operional requirements to support the development of Ada prograns
requiring runime support. Conclusions are presented 4n Secton Four.

'T -r typ of im p a uquizud is um=a mi uaiomaL wh= synmic iatey nrf to comm .
ams wizh mquO to objen's comma. md fumaianm iu ug*V id' to In WAity of a pm=i to beiaw m atpMad

-P- Ads

Ap&Th A" R=

f"- avv ------n~--- J

buummMP~ EM"M~M M&Erec

Figure 1 - Ada Runtime Support

. The Operatioual Eavironment

This secnon desribes various design alterrnaves for providing Ada runtme support. This runme
support may come ftom ft undelying opeaug system, the Ada Runinme System. or a combinazion of the
above. Using only waderlying opamtmg system support implies daz c=ar Ada featres (e.-. residng) will
not be used. Using only Ada Rumie System sport implies that all cpabiliie not supplied by t e
hardwa, but required to support Ada programs will be provided by die Ada Ranuime System. The corn-
binmion appro implies tat the Ada Rzmuime Svsm will use services of an underlying operatng sys-
,r to provide serviwcas to Ada application propams. The applicaton progams may also. if desired.
directly use ft sevie of tie underlying operawmg systm. This paper assumes ta a combinanon
appzo1h v'il be used and that die underlying opeatmg sysim is vusaed.

Z.1 Ardhitectare of a Trusted System
Figur 2 illMusas a geneW ahieum for mmed systems. At the lowest layer, a primitive kemel

povides an incem to thehdwre. Hardwar memory matagemen and intmu t processng a pan of
this layer. It is not mug the e nteid kernel that familtia opera ing syme abstations appar. This layer
imlemnte de process abstacion and possibly dle systen absacdons The sec y kmrnel implements
the referente monitor conp ,using the p nces abstactions of the extended keneL In addition to the
secury kernel, than are musted processes. The secrity policy allows tustd processes to violaxe the
seurity policy of die securty kenel but only in a precisely contrled manner.: The prn:ss scheduler is a
classic example of a misted process. All of these items collectvely make up an opeaing system TCB.

2 Whi& it is ohm m dm uinu padm u an aow to v m nmay pokey. fouadly dw &M d LAPadu
suy pokuey me" bt hindo d~fy by misbg umiad a bmew o~d~ and psaixs a mod poven
to w n miy objoo w~ Us Ir,

lk- J MU U.

609 map

Sam- 11=1BndM1 M
mmjm pm p

. ~PmmXm8gm

Figure 2 -Trusted System Architecture

Above the operuing system T . all accesses to objects by subjects are mediated by the scurity
kerneL Subjects are active entiuer that ar implemented using the pr-c s absti ons of the extended k-r-
nel. UnLike ousted processes. they are lled. There am two classes of subject, msted and unmsted.
Trusted subjects also enforce a security polic9. but their security policy cannot invalidate or ,nrifer with
the security policy of the operaing system TB (e.g. security kernel and trusted procsses). Lxampies of
masted subjects a= database managemem systems, mail handling systems. and simulators. Trusted sub-
jects are very similar to tusted processes the distiguishing factor is that the use of trsted su"Jets is
mediated by the sec=ny kerneL 'Te ope-ang system TCB and all misted subjecs mak up an extended
TW.

According to the Trusted Compum Security Evaluation Critmia (TCSEC). the TC is the toaLity of
protecton mechanisms that enforce a secuity policy, and musted software is the software portion of the
TCB. Yet. it is not clear if the protection mechanisms for integrity and servm asmurance policies can be
implemented within a TCB framework. That is. the protecton mechanisms for ingry and service
assurance may be distrbuted throughout the system. mal ng it impossible to distinguish TC and non-TC3
elements. In this paper, we consider usted software to be the software portion of a TB, but recognze
that there may be other software that is security rele-vant but is not part of a TE.

--1 Private Runtime Systems
One proposal regarding Ada runtime support in a trusted environment is a srucnred approach with

four components: untmrsrd applications. umusmd runime systems the misted security kernel, and the
trusted security kenel rnaime sysem. Each applicaion and the kernel maintain privam runtme system
The secury kenel's rumme system is =hz&eriUy pat of the securiy kernel and thus within the
opemag system WE. The applicatin rame systems ae archiutecally part of the applications. They
cannot subvert the proecton meases of the kernel and thus need not be tusted. This proposal is some.
what simplified. It does not consider the archiem of a usted system as presented in Figure 2. The
operating system actially consists of a layered kernel and rusted processes. There may be a runime sys-
tem associated with all of these entites, as well as a runame system associated with each of the system's
appficaorm Further. some of the appLicanons may need to be msted (e.g. a-sted subjects).

ADVAw Mm for mUnd =b1M is uUMd MppiM.&

While it is hard to predic: whether some applications can be developed without using Ada feanres
that require runume support. there is evidence that a rusted operating system can be developed in Ada
without using runame support. namely the Army Secure Operating System (ASOS). Theredore. in the
remainder of this paper. we assume that the misted opernng system components require no runtme sup-
port. and concnurte on how to provide runame support to applicaton programs.

In Figure 3. an arciuecure is provosed that shows private Ada Runmne Systems for each avplica-
mon. The runtne systems of mited subjects must be usted: ther esign and development must be sub-
jected to TCSEC requirements. If this were not the case. malicious code could subvert the security policy
of the usted subject. The runtime systems of untrusted subjects are not misted, because they necesily
cannot subvert the protction measures of the extenoed TCB. Sectrity relevant features of th. Aa Run-
time System ae o. ly security relevant if the runtme systen is required to handle multiple levels of dati.
The pivae ranume systems of unmisted applications will not handle multiple levels of data.

A shortfaLl of this proposal is that it assumes that the secmty policy is enforceable by a cenralized
TCB. While a conidentiality policy can be enforced in ths manner.. IL is not clear that ntegry and service
assuance requrcmenzs can be enforced within , small canralized TC. Taius. tnere may be inteimty and
service assurance requirements placed upon applications that are uot part of a TCB. For cxample. it may
not be desrable to int oduce unbmown or unscruanized code into any aric on wian titegit, or
assuancz of service requiremems. This implies that Ada Runume Library routines supplied by venaors in
execuambic form may not be introduced into the Ada Runtime S ystem, far misted applications. We return to
the issue of functional integrity of Ada Runtme Library routines during our discussion of the aevelopment
environment.

Building a secure a. icaon requires conside-able effort during all pa-e, of the software lifccycle.
With this approach eact application is considered separately, and the process of evaluating the applicauon
and the atmlication runtime system is performed individually for ec=:. application. Using runume suppot:
will make the application large and ams more dificult to cvaluate. TIhis could result in a ter.dency not to
use Ada tetazne such as tasking, using instead system ievel routnes. The result - less portable applica-
tions.

-3. Shared Runtirme Systems
A logcal alternative to private runtime systems are -=ntime systems that ai. shared hy seve-a! or all

applications. We first considered proposing an Ada Runtane System as a msted process in ne oper ting
system TCB. but the TCS=C is very speciric about what can and cannot be part of the operiung system
7C3. Beginning with ciass B*.. the TCB must separt those elements that are protection -tmcal from
those elements that are not. Class B3 and above tquies :!it the TC3 should be minimized in compiexty.
and may not contain modules that are not protection crncaL Protecon ciucal elements are thcse whose
normal functon is to deal with the control of es between subjects and objects. Clearly. there are
both femures that are and are not protection critical for a runume system providing services to several
appications.

There am two fairly convincing reasons to argue that the rniume system shouldn't be a trusted pro-
cess in une operating system TCB. Frst. since rusted procese are not mediated via the security kernel
but are part of the 4TC. they are subjected to stingent assurance requirements. In particular, at levels B2
and above a thorough covert channel analysis must be performed. Second. it is hoped that in the funire
many secure operating systems will become available as Commercial Off The Shelf (COTS) software. To
expect that such systems will include an Ada Runnme System as part of their TC is unreasonable,
because not all customers will want such support.

Rather than reject the concept of shared runtime systems, we propose that shared rutime support be
provided via a tmsted subject (see Figure 4). With this proposal, a shared runtime system, which is archi-
tecally an operating system subject. supports several applications. Careful consideration is needed to
determine if all applications will be supported by the same runtime system. Possible scenarios include:

" One shared runtme system.
* One shared ruinume system to support all misted applications, and one shared runtme system to
support all unrusted applications.

o.1.

TA T A LIA

2 NI N

URS URS

TA-UMad apiMam TUS.-..umd n.ui.
UA-.iasm a/pIicuna URS_.- ... Sys=

= W~fdTC3

Figure 3 - Private Ruatime Systems

Aln app-ica.ons at a given securiy level shut the same rime system.

If the runime system is shared Among applications at diffe:en securityv levels. it will have to be
auumd An utusted shared rian c system is feasible if sharing is restrczed to :ngie. samne-evel. appLica-
ons. However. even if the shared runnme system is unmiusted, its funcuonal integrity (its ability to behavc-

as expected) should be evaluated.
One dkadvamug W this proposal is performance. Eacb application that uses tie shared rundme sys-

tem -rIuilrs a minimum of two context switches when runime sup pot ris requested. The first comex
switch to makce the applicamo program iractive and the shared runume system active. and a second con-
=a switch co make the shared runame system =active. and the application program actve. All context

switches am mediated by te mm*nt kernel. which will also slow things down. Shared memory might
reduce the number of coue switches requited in some'isacs

2A4 B2.Like Raurmue hrdRundwe Systems
* Before a Tmumd Ada Runtime Syste ca be built the ctizeria for building wne must be uderstood.

Ini this section, we look at TCSEC criteria and begin interpretation of the 32 citerut for a Trusted Ada
Rumime System. This unteprettion applies specifically to shared runtie suppomt because the cera for
privatedm tua..pport most be intepretd, within the domain of fte individual application.

2.4-L Security Po.

A security policy is a statement of rules, Laws. and practices that regulate how information is
managed, prfotected, and disseminated, Since the TCSEC mainly addese confidentiality (as opposed to

ntegrity and service asmce) F this interpretation of the TCSEC will do Miewise.
A secuty policy nd formal qcuy policy model for the Ada Runume System will need to be

devaloped. Beli and Laftduas the most often used formal model requires identifying subjects and objects
and tm showing dot access to ojects by subjects does not violate the simple security property or the-
property. The only subjects will be Ada prg bms. Ihe objects will probably be the same as operating

Hoevree=ffte h~drumn i ugsr, x: aling it biit.5...v

TA TA 'UA LIA

my I N

OS TCR.

Ftgure 4. Shared Runtime Systems

systemn objecs (eg. files, devices and memnory).

Z.4.2. Acrauuiiblity
ThA= must be a mne= to assure individual w.-cuuimbility of acuoas. Thus it must be possibie to

amreiecnrf in individual's identity and audit an idividual's acuns. The TCSErC idainies the need for
paswords to auhrmcm individual users. The only users of t Ada Rwiume Systern will be Ada pro-
pums a3d thei idmizty should be authenticiad by system labels. Audit requvements should be very suzu-
lar to duos custently mised in die TCSEC.

2.43. Asmaceo
Assunce objecives help to guarme that the security plicy is enforced. Lifecycle assuace

requmzments ensue that die system was designed, developed, and mamraed prope: v. Operuonai
assuuuica. requireernts ensu that the system arcitecure provides protection from extemnal interference.
We have ideaulfed several ises that must be addressed.
1. AUl inwfaw& between the Ada prograni and the Ada Rundin System mwi be defined&

To sad*ufy BI iw:JA.die TCSEC equi-te. taadewiptivewtp levelspecicaaio(DrLS) of theTCB
be developed and mainmained. It must be an accurae deseription of t TCB inwafac.4 ARTEWO has
done some preliminary work in this area by ded lg "A Model Rmadine System Intefae for AdL'
This work could be 6Lad as a saog Point, but the acul TCB interface will probably be somewhat
different.

2. AR iWerfacar berween die Ada Awmame System and die ousted operating rystem mum be defined

4 . tu Onu w nanny m~d uTCB mmfam (am Rgm U~

,6,

It is assumed that there will be a tedu, operating system (either Ada or non-Ada) underlying the Ada
Rrnnime System. The DTLS for the Ada Rwntme System must identify all interfaces to the undaelymg
operating system. This is in aditon to the requirenent that all interfaces between the extended TCB
and the Ada program be identified.

Note that this requirement is not identfied in the TCSEC. The TCSEC was developed for general pur-
pose operating systems. It does not specifcally recognize (although it similarly does not prohibit) the
msted system architecture presented in Figure 2. We believe that all usted subjects will have to iden-

fvtwo TCB interfaces: between the extended TC3 and ume, and between the rted subjec and
op .zn system TCB.

3. A thorough search muit be consiczd to enswe that coven channels are not introduced.
The msted operating system will enforce mandatory access control but the introduction of a rusted
Ada Runtime System could inuoduce covert channels. Recall that were am many alternatves for the
runtime systen design. ranging from all Ada programs sharing one trntime system to only progams of
the same security level sharing nmume systems. If any alternative is chosen that allows Ada programs
with different scuny levels to sham runnme systems. then covert channels could be introduce and
must be anaiyzed.

Ths does not represent a complete interpretation of the TCSEC for Tsad Ada Runume Systems.
but it does adres some of the most obvious and interesting requirements that need to be considered in
developing a 32-Like Ada Runtime System. Integrity and service assumance requirements must also be
defned.

3. The Delelopment Environment

Thus far. tis paper has been concerned with the security issues of providing runtmue support in the
operational environment. It has identfied two alteriatives for providing -.uch supp. 1) a private Ad-
Runume System that is included as part of each Ada application program: and 2) an Adl Runtme System
that is shared by several (or all) Ada application programu Now we examie how the security require-
meats for eac:h of these alternatives are related to the security requz-emes for the development environ-

3.1. Private Runtime Support

In was section, the provision of separe runtime support for eaa applicaton is examined. As Figure
5 shows. there is an Ada Development System (ADS) that consists of several software ools that perform
the task of trasfarming Ada source programs into Ada executable programs. The inputs to the ADS are
sources modules and Ada Runame Library routines. The output is an executable module. which may
represent either a rusted or unrusted Ada application. he following discussion idenfies requirements
placd on the development environment for musted appications (those applicatons that are part of a TC3).
and where appropriate, requirements for e aplications.

3.1.1.sAumptious

7Ihe quality of the source modules is one of several fac-ors that can affect the executable module pro-
duced in the development environme. Nonetheless. for the purposes of this paper, we assume that the
functional integrity of the source modules is beyond refute.

3.12. Functional Integrity of Rundme Irary Routina

A key concern is the inrodction of ninume lbrary routim into tasted applications. The Ada Rm-
time Library is a set of routines, typically not available in source form. provided by the ADS vendor. Intro-
ducing these routines, which potentially contain malicious code, into a masted application is a violation of
TCSEC assurancze requirements. Malicious code placed in a masted application in the development
environment could result in a security policy violation in the operational environment

Thus, it must be demontated that the Ada Runtime Library routines have functional integrity.
Source of the routines must be available, and the routines must be shown to be correc:, complete, and exact
implementations of their requirements. Though we recognize that it is not possible to show absolute

D3)-
Ad im LbM"

Figre $ - The Deveiopmmt Enviromment

finicronal inegmity, arop assurance techniques for the level of mst desired must be used. These
may include: formal speciication "rformal specifications. testing, and extensive par review.

Functional integray of Ada Rumtme Lbay routines may also need to be established for unuusted
a'cions. As described emlier, we dedne a musted application as efforcing a security polic%. within a
TCB framewor. Thee may be arplications that contribute to overall integrit. and assmnc of service
requuemenm. but that are not part of a TCB. We expect that these untusted applications shall also requir
me Ada Runtme Liry routines to have functional integrity.

3.. Synac i Intnrty of Runtine Library Routines
Once the functonal integrity of Ada Runime Library toutines is established. it must be maintained.

Thus. there must be implemented within the development enviomnment an intgity policy that c.nfores the
syntactic f of int'ity. Syntatc lneity constrains access purely on a computatital level. withmt
regard for the content of the protected resour. The syntactic integrity policy must prevent unwanted
modifcations to Ada Runime Library mutine Biba defined a mndazor access control policy to provide
such protetio, but a dis econary es contol policy might also be u.'-.d.

3.1.4. Compiler Interactios

There is a close ne betweet Ada rmme library routines and the Ada compilation system. Duing
compilation, the compiler tazslaws the Ada program into machine language. The compiler has two
choices for providing runime support, The compiler may provide runtme support by impLicidy invoing
runme routines, or the compiler may simply generate inline code. The ninem routines are aid to be
invoked implicidy because calls to suppo g rouines ae not visible in the source code 5

The preference is to have rmime support provided with implicit calls to nname lirry u
ther than inline generated code. Thbis approach allows a clear delineionm between the Ada Rumnime

Lbrary and the Ada Language Compiler. beneficial because it is signiicantly more difficuk to provide a
musted Ada compiler than it is to provide a Trusted Ada Runtime System. By cagefly delineating the two
tasks. a Trusted Ada Runtme System can be built without a trusted Ada compiler. Of course, we must
recognize that the unmasted compiler may sabotage the nime system.

s A" alm aim aepis inamu sappa. whm aih to Ada R n Lbmy mmma m viubW iti soum od.
CAm* m ma . wiA plmii um P is low da M=Mm hl= i .qia dmam de GiI rewly
Sin cod 0v~ a WMW

3Z. Shared Rundme Support
When shared runtme support is being provided for applicatios the development environment

changes. The ADS stll performs the functon of tasforming an Ada prograin into an executable module.
but the Ada Runtime Library routines are no longer an input to the process. The runwne routines have been
incrpoated into an esecutable module of their own. and ae already installed in the opranonal environ-
ment as the Ada Runmine System. Fuctonai inrueity of the runtme librry murtnes and syntactc
inretgty protection ae issues that must have been considered when the shared Ada Runtme System was
built. Similarly, how the compiler and the ninme lb=y rounnes divide the responsibility of providing
ncine support must have been defned when the shared Ada Runimne System was built. There ae no
Ada specific responsibilites placed upon the development environment when shared Ada Runnme Systems
ar used.

4. Concusions
In this pater, we have examined secuy issues relaed to the rnime support that is required of Ada

progrms. Specifically. we examined architecnral approaches to providing custed rxunme support, and
the resumlting requirements placed on the development anvironment. Two aite nanve approaches for run-
time support axe presented: privae Ad Runume System. one for each applicanon. and Shared Ada Run-
tume Systems. which are shared by several or all applications. Both aleniauves seem feasible, but one may
be preferred for a specific operational system.

The net step is to begin to build a rasted Ada Runume Systemn. by developing a detailed but infor-
mal specificuon of the semty relevant Ada Runame Librmy routines. This specificaon would serve as
the basis tur a DTLS for shared ninume support and as doctmentaton of nwnme li-rar rotunes intro-
duced into the application for private nzntime support. The ARTEWG Model Runime System Intera
=n be used as a smting point for this work.

"-9

POSITION PAPER

ACCESS CONTROL FOR A SAFETY CRITICAL DISTRIBUTED
SYSTEM INTERFACE SET

Sue LeGrand. Planning Research Corp.

January 2, 1990

The Problem

The National Aeronautics and Space Administration (NASA) must
guarantee the integrity of mission and safety critical components in
large, complex. non-stop, distributed environments such as the Space
Station Program, the Lunar Base, Mars exploration, and ocher projects
for which Ada is the prog'amming language of choice. Run time
issues include real time performance, reliability, fault tolerance,
survivability, and dynamic extensibility and reconfiguration in non-
stop environments.

All access to safety and mission critical components of the system
that is granted to users must be monitored and controlled for the
appropriate operations, resources and constraint enforcement of
time, location and other restrictions. In addition, access may be
dependent upon modes or operation; different management domains
for subjects. targets and intervening message paths; and normal
versus exception contexts. Integrity must be assured at all times in
the life cycle against the hacker who inadvertently causes damage,
the terrorist who maliciously seeks to cause destruction, or a
disgruntled former staff member who leaves with potentially
dangerous knowledge. Furthermore, there must never exist a
thread of control that runs amok (i.e., may be unresponsive to
commands and is in an eternal loop occupying system resources
and/or may access critical resources).

Systems which contain only the policies, manual procedures,
encryption. passwords and other traditional means of security and
integrity management cannot provide solutions to the above
challenges. Much of the public domain research to support computer
security and integrity has been conducted in a static host
environment that uses shared services and resources managed at a
low level with an untyped interface. These systems are a composite
of different paradigms and device characteristics.

1/30/90 [:53 PM

The preoccupation with these static issues does not provide solutions
to the dynamic (runtime) issues of a big and growing class of
applications; namely large, complex, non-stop, distributed systems
which evolve incrementally and must provide life cycle support for
mission and safety critical components.

A system is needed with a runtime enforcement of the security and
integrity policies. In order to provide this, three needed elements
are:

A strongly-typed object oriented operating system with
assertions-based enforcement of constraints.

A dynamic, capability-based addressing design for subjects.
A dynamic access control list design for targets.

The Prototype

Sponsorship is being sought for a security and integrity assured
prototype to be developed within the context of a mission and safety
critical system that supports fault tolerant and fault recovery
software and hardware components.

The models, techniques and tools will be developed to support the
goal of runtime software instruments for automatically evaluating
the security and integrity effectiveness of object based computer
systems.

The models, techniques and tools will be designed and evaluated in a
multiuser, multilevel security and integrity environment that is
supported by an object management system with assertions-based
enforcement of constraints in the system software. This object
management system will control access to all resources of the
system, rather than just the database. This environment will be used
to demonstrate optimal performance and ease of use with a
transparent, distributed and multiprocessing computer system.

1/30/90 1:53 PM 2

This research will demonstrate tht benefits of using consistent and
precise models based on an object oriented paradigm to satisfy the
security and integrity requirements of computer systems. This
research will be conducted within the context of a mission and safety
critical distributed, non-stop, mulcicomputer system that must
satisfy dynamic access control of multiple users, even in the presence
of faults, upgrades and reconfigurations.

A plan for testing this type of access con,,xol calls for multiprocessor
clusters (at least 3 processors per cluster) interconnected by a high
speed. deterministic local area network (LAN). In turn the LANs are
connected by a wide area network (WAN). The plan calls for a test
bed WAN to integrate a minimum of 3 LA.Ns where each LAN has a
minimum of 3 clusters and each cluster has a minimum of 3
processors.

An associated goal is to evolve the testbed to demonstrate proof-of-
concept of dynamic extensibility such that no software changes are
needed to add or remove LANs. add or remove clusters of a L.N. or
add or remove processors within the cluster. The systems software
(e.g.. the processor kernels and ite run time library modules)
provide support for the access control while also satisfying the
requirements listed above. rhis includes non-stop modifications to
advance or regress the operational baseline.

This prototype project is a subset of a larger effort of the High
Technologies Laboratory (HTL) located at the University of Houston -

Clear Lake near Houston, Texas. The HTL goal is to reduce risk in
computer systems and software engineering issues which are
considered critical to future missions of NASA. HTL works with
private industries and government agencies other than NASA. The
project is associated with the Software Engineering Research Center
(SERC). which is a wholly sponsored research center by the long term
research division of NASA Headquarters with the same mission and
priorities as HTL. Dr. Charles McKay is director of both SERC and HTL.

1/30/90 1:53 PM 3

Low Ada
anda

Trusted Ada Kernel

John McHugh

-Computational Logic, Inc.
30 January 1990

One of the potential worries in developing trusted Ada applications is the
trustworthiness of the Ada runtime system. Anyone who has been confronted with a
half megabyte core image of a trivial program has wondered,

1. "Is this really necessary?"

. '"What's in there?"
Part of the problem comes from the immaturity of the Ada technology, esveda! y as
regards partial use of predefined and library packages. Another part of the problem
comes from a tendency of developers to simplify compilation through the extensive use
of runtime support.

The results of such an approach run counter to the minimalist maxims of tusted
systems. TCBs that are intended to provide high levels of assurance are constrained to
contain all and only the trust enforcement mechanisms of the system in quesdion. This
is true whether the system in question is being used to provide security in the sense that
information compromise is prevented, or whether it is being used to assure uhe safe
oreration of a vehicle or other machine. The minimality of the TCB is undermined ii
the size of the runtime system required to support it vastly exceeds the size of the code
due to the compilation of the TCB.

Several recent developments hold promise for helping to bring this situation under
controL Requirements from the Ada 9X workshop held last spring in Destin, Florida
call :or compiler vendors to disclose more of their implementation decisions. This

includes decisions that affect the choice between runtime support and inline code for
certain constructs. This call was echoed at a recent Ada 9X trusted systems workshop
hosted by IDA, especially with respect to heap management and the need to avoid the
use of a heap for well-behaved applications that eschew explicit dynamic allocation.

The latter workshop also brought forth a call for both a standard intermediate
language (Brian Wichmann's Low Ada proposal), and for the development of a
standard runtime kernel for use with trusted or safety-aitical systems. Low Ada is
viewed as an Ada-like language with a simple static semantics that can be produced
from an Ada front end. Low Ada would have formally-defined static and dvnamic

1

semantics that would permit the verification of Low Ada programs as well as other
forms of static analysis. The trusted kernel can be viewed as providing runtime support
for, at least a subset of, the program that could be written in Low Ada.

I propose an extension and unification of these ideas. Low Ada is a much more
flexible language than Ada. Many of Ada's type restictions and enforcement
mechanisms would be enforced in the Ada to Low Ada translation process, but are not
part of the Low Ada semantics. This makes it possible to write many programs simply
in Low Ada that are difficult or impossible in Ada. Substantial portions of a runtime
support system fall into this category. Although originally intended as an intermediate
language alone, it appears that Low Ada could be used to implement large portions oi
an Ada runtime system and/or an operating system kernel for use in support of trusted
and safety-critical applications. Given a formal basis for Low Ada, a formal
specification for such a kernel would appear to be tractable.

Development of such a kernel would provide an opportunity to explore a number of
trade-offs that concern both security and integrity. If heap management is included,
how is memory reuse achieved? Are there reasonable ways to support multilevel
tasking in Ada? What is the role of the runtime system in promoting data integrity?
Can such a system provide process integrity?

It is clear that this proposal presents a number of research issues, some of which are
already being addressed in ouler forums. Work at Computational Logic, Inc. is
intended to produce a formally-deflned subset of Ada, known as AVA, with a rigorous
definition in Boyer-vfoore logic:. An attempt to provide a formal translation mechanism.
from AVA to Low Ada is being considered. Issues connected with tle fornai
specfication of operating systems are being addressed in the context of Mach by several
researchers. Specification components for Ada are available in the form of Anna and
Larch. Work to link "Z" to Ada is being considered.

A trustworthy Ada runtime kernel in Low Ada would draw on all these efforts, and
could provide a vehicle for unifying and focusing Ada trusted systems research in the
near term. As Ada approaches maturity, it is important to look beyond the problems or
first generation systems and address some of the open issues in security and integrity in
an Ada context.

Identity as a Basis for Ada Run Time Environent

Security and Integrity

Jon Shultis

Februay 16, 1990

I

1 Position

Ex:ension of the lanauqe-level policy of strong typing to all resources iz an Ada envionent,
coupled with more exprmive typing, provides an dective and prac.ical =.ea. of ac.:evig security
and integrity.

2 Background

For present purposes, & secuqty brwch is any behavior of a system that provides unauthorized
.csms to information or controL It does not matter whether the erat behavior is produced
intenionally or idanuafly in either cue there is an opportunity for abuse. The phrase 'any
behalvnior is here meant in its broadest ense, so that such things as cove.. timing chanaels are

." covered by this ddkition.

An int grity brueach i any modification of information or control which comproCmise its a&c-
curacy. It matters not whether the modiiation is authorized or unauthorized; in efther case
improper computations, decisions and actions may result. Obviously, integrity brxches may co=-
pro=se security by corupting maniss that enforce policies, and ice 'er.

Note that these dediutions classify accidental modifications of data due to environmental con-
ditions as integrity breaches. Such breaches of integrity are to some extent unavoidable, and more
robust systems will enable detection and repai of integrity faiures. In what follows, however, we

3ThWs work wu mppmted in pan by DARPA under contrua MDA g72-d68-C-07G.

L1

sha focus on the problem of nainrtainin secrity and integrity in an idealized world of flawles
physical devices.

The prob le-m before us i to find a means of achieving secaty in Ada run ti:e envnmenu .
The solution we propose is based oan a familia:, if sonswhat nalve, view of strong typing discipane "
as language.evel policies for controlling accs to inxtnnaion and c=trL

In this view, any operation in a progrm is egarded as a cousumer and producer of racurceg.
The signature oi the operation species the type and access capabilities which the operation has for
each resource it manipulates. Language rule for inheritance and subtyping goverm the propagation
of acces aut-hcizations. In "orange book' te-ms, we have the following rough correspondence

0 type discipline m security policy

4 typing = marling

* ove load resolution (operator identifcation) = ideitication

a type checking and e=-or reporting - accountability

* compiler validation assurance

0 co=piler protction - continuoa protection

With this coarmpondence, a "3ecu.ity bresch" occurs in an Ada prgram if an. operation is pt-
mtitze to aczw, c am of a .- pe or in a mode not authorized by its signa:ure.

The 3-pecifc polices of the Ad& type discipline do oct fu=;11 any of the spec - objectives
for various models of -- ued sy3_t.ms, such as heraccal sensitivity clawsifcation. Moreove:,
t.e resoonsib iiy for enorcen even of the ~ty~pe discipline does not extend very L beyond
the boundaries of a compilation unit. We contend, however, that an appropriate Senerlization
and exoueM ion ot the type discipline to all reources in the environment c be used to fulml the
objectives of rsted syst-s at 4 veY high level.

Two indevendent extensions are indicated. The fit is to extenmd the domain of the type
discipline to include all resourm in the envronment. Current Ada. run time environments assume
tl.at any :mponsibility, even for simple Ada type integrity, stops at the boundary with the host
operating environment. For example, when a file with a Wven Ada type is written, it in represented
by an object in the host environment which carries no infor-mation about its Ada tpe, and its
intewty as an object of that type is not guaranteed by the host environment. From & security
standpoint, this is i tolerable, it is simply not posible for a system to be secure if it routinely
t-ase:s information of all kinds to an i=eure domain where it May be subjected to arbitrary
analylis and trasformation without any enforCeable Controls or audits. Of course, this problem
is n=t unique to Ada, but pervades the architecture of al compartientalized, &, opposed to
integrated, software syste=s (which is to SAy, All exzsting commercially available systems).

2

z ' ~ ? -- _- - - .-. -.
.. ,,,, ,, ,,mm . mm, m'mm ? mmm . ..

The second is? to extend the expresivenhss of types to enable speciication of properties of
inf"rmaon and conurol which are relevant to security, such as resource behavior a.d sensitivity

." lss*cations. Note that the exte=ded type sysen which we propose is to be imposed on tze
ru time environment, but noc n.esasrly on the Ada language itself. In order to be used in
& secure environment, comonents written in Ad& would, however, be required to und=ego an
analysis to verify, their propertia vi a vU the security .eqwhman of the intended appiication.
Thus oux proposal can be realized either by change to Ada, or mre conservatively by requir.-g
Ad& component to obtain security clearance before accsing sensitive resour es. Specification of
secuzrity properties and analysis of progras relative to those specifications can be achieved in a
vaniety oi ways, for example along the lines of Anna.

The rezmainng discusion is devoted to ccplainig what extensions are required and how they

can be accomplishecL

3 Strongly Typed Environments

Any acces control policy which in to be ec6rced throughout & run time evuro ment requires

positive identification and cfassification of all :ources in the envronmeat, includ.g persistent

4aa, processes, and (physical &s well as abstract.) channels. Positive identification -equia only
that every (.-ecoF.ize,) resource be assigned a uziversally unique, location- idependent ide:ifi
(uid). Positive lassification :.equirs that each -wource be associated wit'.. at ype. Note :hat
every type is itself a resource, so te associaticn can be represe=ted by a pa"- of -id's, one for t.Z"e
resource and one: for its tpe.

A rearkably simple notion of type suices to obtain the expressiveness requi:ed for classin-ca-
tion: a typ.e is a seat of proper.ies, closed under entailment. Thus, for exa.ipie, one prope:ty of a
te of interactive proram might be that its response -imes are lndependenat oi =nemory and cpu
loads, at least within a given range. This is not the place to expand on this topic, but it is worth
notin --!--at there is a natural notion of subtyping and inheritance in such a type system, in which
-subtypizg ainount to specialization. This feature is critical to the definit:on of such :hitgs as
securvty classes, which are metatypes (types of types), the exaapies of which are types that carr y
security poperties ceoon to the class. Access controls are deined on classes, and u=toma:ically

izherite !an a unifo= way to all subtypes. Such things as hierarchical clasifica:ion !:atices can
be erabedded in the tvpe latz.ice in the obvious way.

Of cou.rse, deta=ininj whether a given Ad& program exhiits such properties is dependent

on the stu:e of verification technology, and we ully expect that many types which would be used
in specifying secure mtem would be extrenely di cult to ve.i-y with c-rr-nt technolog. This
should not prevent us from specifying them, however, nor should it prevent us L-rom providin
provisional, or partial, assurances. A systen in use is suspect to the extent its cleara.ces depends
on incomplete proof obligations; but it is usef l to know precisely what the expectations for a

3

system are, and the extent to which those expec.ations are not known to be met.

The library system for an Ad& compiler may provide some insight into how these vnen-io
co6perate to jipjement policy in the envuionment in a :eative, simple situaion. One of the
more enlihtened aspects of the Ad& design is its recognition of the need to extend the domain
of ofponuibilhy o the type syta b-cyond the boundaries of individual eoipilation units. Aca
implementations are therefore required to eniorce a policy governing acces to library units, where
in this case the subjects are library units and the objects are other Iibrary units zanei in conutot
causes. By associating & universa id with each compuiation of a 3pec=cation. :t is possible to
asign a "signature' to each library unit. The signature spe cias the other library units wich tile
given unit is authorized to access. The rules regaring compilation orda, accss to library units
and subunits, and Unsitug armount to un aczes control poilcy governed by these signatures.

Wien & unit is compiled, symbolic references to other units am resolved to corseponding
universal id's, and the symbolic nam are disca:ded. In al subsequent uses of the c¢mpiled unit,
its eferemces to other library units are mediated by the uziversal id's.

When a unit with a given sy.bollc na= is recompiled, the objects which previoujy wet by
that name in the: library are replaced, and becoze inaccessible. 'hus a y subsequent att-pt :w

use a unit cznta;irn a -eerence to the obsolete unit will Eail, thereby e.iorcing A4a's policy on
compilation order.

For another simnple (but perhaps =ore pertinent) example, let c be a security. class, and let
C(,i-e of t) desig ate the subtype of Class c consisting of iles containic objec:s of t:pe t. Acceas to
such & 51e is :mdiated by the run time environment, which must certify that -he Sent ac.essi=g
tahe =C~ as the authority to do so. Suppea that the immnetiate agent is a= Ada progr-am .n
aat-hority :.ecuied is th!at theg progra=2n. as cer~ified the authority oi a hurman user:ea:z wi-.!
"Ze progra. to obtain the given access. The secvrity property which is recued, of '.he p -o
that it has c.--.ed out some authentica:ion protocol with the user prior to requesting the acces3.
If the program in question has been certified "y whatever means) as always car.-in out :ze
required protocl, then that fac: will have be.z recorded in its type (.igna:u.-e). It is ::erefore
a simple matter for the run tine e=vi-o==zt to clear the progrs&m for the requestea accms by
ma.ching the relevant part of its signature against the type of the claiasified resource.

4

USING ADA TO

SIMPLIFY ENCRYPTION SYSTEM ARCHTECTURES

Wam R. Wore, senior COMSEC Syswn Egineer

Michae A. Diaz, Snior COMSEC Software Eng er

ABSnACT

Tradionally, guarateeing that Red (sensitve) data is not accidentally released to an adverary

has been one of the mos difficult and expemnive problems in designing encrypton systems.

The difficulty ases in anempang to prove that Red data cannot be rdeased to the adversary

even in the event of a hardware failure. Typically this proof takes the form of a Single Fault Anaiysis

(SFA) on ft sysm. The SFA analysis is used to verify that any single failure (Hardware or

Software) will not cause a release of sensitive dam to the adversary. The cost of this SFA analysis

n eponenially with the increased complexity of the hardware or softwam. To reduce ft

expense of this analysis, the system designer must partition the hardware and software into small, easily

analyzed secions.

T--idonaily. encrypt on system arclirems completeLy separate ft porton of the system which

processes Red infotmanon from the portion of the system wtch performs black (non-sensitive)

informanion. This results in a system which contain two processor subsystem . a Red processor

subsystem and a Black processor subsystem.

From a perfonnance standpoint, the dual processing system is not necessary since today's

processor can easily handle both the Red and Black processing loads in the encryption system The

result is that traditional encyption systems contain twice as much processing circuity as would be

required if only one processor were used to perform both the Red and Black processing functions.

This paper p set a single processor encryption system aichitect which uses various

Ar= of Ada to ensum 3aparaon of Red and Black dama in h system Also discussed am various

pcauions which must be employed when using a high level language in an encryption system. This

paper concenrates on the software architecture of the system but also includes several hardware

considerations.

LNrODUMCTON

In taditonai encryp in systems. taartnz g t Red (sensitive) data is not ac.denmily

teleased to an adversary has been one of the most difficuLt and expensive p obiems facing the designer

of ftse sysems. It is generally tegarted that the only dting worse dn not encryptng sensWve

infomnnon is thinkin tt the informano is being encypted correcty when in reality it is not. ln
this siwanon the user dvdy tnsfs sensmive infaan becuse he or she truthad the enc-ypnon

system is pm!ten de infomanon properiy.

To guaa e t= the syste will, not reveal sensitve infommanon. even in the event ot a

falure, the sysem designers will generally paform a Security Failure Analysis (SEA) on the sysem.
The SFA analysis anem:ip to prove tha the system cannot fail in a way hat would allow sensinve

infommnaon to be eleased to an adversary. The SFA analysis should cover borth h ardware degn

and the software design w be effecave.

The cost of proving the correcmess of both software and hardware inc~ases exponennally

with the increase in the comple'ity of the system. This his forc-d the svs desigers wo develop

arc ncmz that anempt to isolate the Red data frm the Black dama.

Figu 1 shows a typical arcbirecmre which reduces the SFA effort. The arc ec re is

separed into two isolated subsystems: the Red proccssing subsystem and te Black prccessmg

subsystem. The Red subsystem pforms all of the processing and memory matagemern assccazed

with the sensitive data and the crypgrapic keys. The Black subsystem pe.-forms Z of the -rocaass.g

of the encrypted dta and usually performs the us interface fcons. Ecn of these subsystems

contin separate RAM ROX m ponocsso ins. clocks. and add decoding ci ny.u, /. The Red and

Black subsysmms am connecmd via some type of encryption system wich encrypts all da belng

ransferred from the Red subsystem to the Black subsystm.

This arvhictee is very easy to analyze since all data which flows from the Red subsystem

to the Black subsy flows thugh the encrypaon sysem. To prove that Red informanon is act

released to the Black processor. only monitoring th encrypton block for correct operanon is needed.

This can be done by using redndant encryon blocks or by placing monitors to verify the operation

of the enrypion system.

2

AWtough the architectu in Figure 1 is ideal fzvm an SPA standpoint. it is very Uieffiient

from a hardware and software usage standpointL In many syses. a single processr has sufficenr

power to handle all of the procesuing needs of the entire syse. In these cume the archirecmure in
Figre 1 will be twice as expesive and take twice the mom of a sysem which shares a singie

processor to preform both the Red and Black pncessing functons. Te system in Figure 1 will
ge=Wsly requre two operang syems, two memory management system and two ses of seff-cest

software, one for each procesor.

In the mainder of this paper we will present an -ltea amhitec= which shams one

prcessor ~o perform both de Red and Black daa procassing. We wiLl discuss how the da langunge

can be uisized to smpLiy the SPA analysis of dhe system and guaantee Red and Black data

The proposed ar hiu -e is shown in Figure 2. Thi a irecure is similar to the tradionaL

meicuu in that ther am separate Red and Black memories which are conneced by an encypdon

fundon. The achriecmre deviates fom the traditonal arhitecure in that the system uses the same

processor to perform both the Red and Black dam processing.

The proposed architectue will be more difficuft to analyze than rtbe -dinaL amtirmc:mm.
However. the analysis task can be reduced to a manageable level by us g -e Ada language o

careuly partitioning the sysem software so that the Red and Black software rouones are louicailv

isolated. In logically isolating tese munnes we hope to achieve the same rpe of isolation tat s

achieved in the traditional, archircure. while reducing the parts count and system size by up :o a

fc:or of 2.

3

Lo

w&CRYPTIaN SYSTR
-------------- se-a..--- -w -- - -- --- -- - -

* IF

KE IIA Ml. ewfPI

* s mim I I-
*EC IMOC3(

PLI pqocasao -ccssa
O*r SIIC2OT *UP'

AN SIN PLI IERAOS

-0T CR-RIC -4 O

* IIRI

..

0027%-

Fqu 1 Trdoa IrponSsmAcim

* I I

Cwo US"~
KEY LCAO ENAP"INT-ESACE

M64CY KWMISCRY(PLAIN TEXT :wpZX
DATA SCUA2 :A TA SC'RC2

AldO SINK ANC SUNK

Fqure 2 Wdifiod - Encryption System Architemitre

Using Ada For Logical Separatoa

During our work in degng security arcbirec=ns we have fbund that we must use a

cobinadion of hardware and software to eSUre tOtaL Red/Black isolarion. Ada has helped us achieve
this isoLWO Some of t softwar consid'aion required to achieve isolaton incude:

S Use of Ada infotmation hiding and package separaton to isolate Red and Black -oud "-

S Parameter passing pointers to Red data
* Disablg of inteupm during Red processing rounns

* Not using Muld-tasking in secure symrs

* Not using boolean type for binary flags

* Using mor than one loop counter in software loops

S Incuding pnxco= seL-ests prior t processing Red data
In addition to d= softwm __de-aions it has beer necsary to impi nr severaL hardware

ftcnI which support the softwam. These " :nlude

Use of the Us= upervisor capabilites of processor to prevent black routines; fom

accessing Red data.

* Using physically isolated Red and Black memories
* Using e=a checking hardwae to verify the operation of the processor

In this paper we will concentare on the softwar teIcques and bow Ada will can be used

to heip casure logical separation. We will discuss the various hardware tecmni ucs only briey.

Ada's capability to do "Informaion biding" has proven to be an exceilenm tool in providing

IRe/Black scpamn. Using infommanon hiding. the designer cant cearm a single Ada package whica

perfoms all of the Red data handling and processing. This package (we will call it the Red Data

Handling Package) must hide all Red dan from all other packages in the progam. By biding all the

Red data from other packages it prevents these other packages from accidentally mistaking Red data

as black data.
The Red Data Handling pack, should be the only package which has access to the Rcd

R.AM. This access control can be enhanced by using the supervisor state of the processor . If we design

the hardware so that only the Rd data handlin package is run in the supervisor mode then we can

add harnware which disable the Red RAM except when the processor is in the supervisor state. Tis

wiMl also help to ensure that alf-packages other than the 2ed Dat Handler Package ar physically

denied acceu to Red RAM.

6

DaM can be exchanges between Mhe Red and Black packages only thugh the enc.yption

ftuncdon. It is te responsibility of the Red Dat Handl r to send Red d= to and receive Red data

from the encrypnon ftacdon.
Isolatng all Red data handling operation in the Red Data Haneyr package also simplifies the

analysis tmabin. This is because only rounnes wtich have acces to Red dam need to be analyzed

and only te rounes n the Red Dam d package have access to Red dat. If the Red Data

Handler packag is keg small (less than 4000 lUnea of code) then the analysis task will be simplified.

Altbough using Ada's informaton hiding capabilities is a big step towards data se pazaon it
is not suffi:ent to qmrme separation. Them are several other accidenta ways tha Red and Black
dam can be mixed. One of the major -ccdeal rixin can occur when one Red Dat Handler.outne

is passing red data as a parameter to another Red Data Handler routne. In g=el. Ada wuil be using

the Black RAM for stack. If the calling routine were to pass the Red da by value the the Ada

coier will place the Red data on the stack (Black RAM) prior to calling the destinaon rouune. En

this case, de Ada compile has inadve:rtLy written the Red daa into Black R.A2V. To prevent ttm

fom happening the software engneer must pass all parameters as pointers to Red RAM instead of

passing the parameters by value.
.anothe recquirment is m disable all interrupts when in the Red Dam Handling package. Ts

reqnreent is necessary to allow the code to be analyzed. It is difficult enough to ay :o analyze

code when you know the exac sequence of code eaxeuon. It is impossible to analyze code if there

is a possibility tha the sequence of emxacuon will be c.nged at by an interru.t.

Like interrupts. muld-taskdng in a secure envionmw et should also be avoided. If muti-csC.g

were :o be used. a security analysis of the Ada Rn-Tme System would be required m ve .fv proper.

open-nn. ThIe runte system in much too complex to be analyzed. Resources available f:or evaiuaang

sofitre on a secure enaypnon system am limited and it is doubtful that more than 4.000 lines of

code could be evaluated.

Another concern in a secure system is that the software is operating correcly on the hardlware.
.*" The software should contain as many checks on the bardware as possible to ensu= that the ,ardware

is t mal!Unctonmg. Two simple checks that can be inegrated into the Ada code which ae the

derl-iton of a new boolean type and the use of ailiary loop counters in all loops.

. .. . lel l llll~l i H i I l l7

Te Ada boolean type should not be used in secure system sincz the hamming distnc.- between
True and False is only I. This means that a single bit failure in the boolean flag can cause a True to

be prewd as a false or a vic ve=2. It is much be=r to define a new boole: type whict assigs
OOH t True md FFH to False. This pmvides a hamming dstnce of S whi h wl peve sing bit

=frm c ms improper oernn. In additlon. the Ada mnge ceckin opton should be enabled
to venfy d= boolean variable can only take on the True and Fals values and d= Z other values win

Cas m xcpaxon.

Auxiliary loop cot=lq should also be used to en'se tha a single bit fiure in a loop vadabl
w o cause improper operinon. By using two coumm for eh Ioop. the origian loop coute a.

am auxiliary loop counmr. and comparing tee counters at the end of the loop. smgle bit error can be

Ada Exiple
An Ada pacimp using only machine code inserions can be developed to implement de Red

Dama Handler Pakzge. 72e use of machine code insemons will guarantee that Red Dat is not stored
in variabl which would require the =ck if passed as a paramee. All parametrs can be passed
using poiner or tL processors internal resters.

The use of objec: oriented design can associate partcular funcdons to u in the Red RakM

used to store die= types of data. All of de funcdons would have te resuiremer iden : ed
for a Red Pmcmsing System imposed on them. For e.xample. the Red R.M iocrion idennried or
bolding the common key may have the following functons associated wh it in a subpackage:

Recc eF.omRedtnp_Port (Redrlpu=_T,,vpe)
TranerToEncrypdonFaij (AlgoriThmType)

Trnser-'Fom_DecyponEngine (AlgritmType)

Parity...Qeck

8

The Red RAIM kocaon idendfled for holding Pain.Text may have the following ftncdons

-" g with it in a mbpwcW.

R-ceive-fm_Rd-tpuPort (RedjnpurType)
Enrypt (Algonthm.Type) - Sends to FPanT Encrypt
Accept (P Tex;_Type) - Receive fm Cphcr_TexDecrypt

Tr iTo_Red_uq=_Po R.dOupu_Type)
Cla=r

Black RAM used by the Red Data Handler does not need Ada machine code insemons. Objeac.

onred design rchniques and packaging would stil be used in order o encapsulate dam and promote

informaton biding. Fncdons assocatx d with encrypted cipher text daa can be packaged as follows:

Accept (CipherTorztType) - Trandferd from Black sys=m or Painzexz..Encypt

TrnsferToBlack - Transfer to Black Processing System

Dec (Algorihm-_Type) - Decrypts and transfers to Plain Te.Acc-pt

CONCLUSION:
A combination of hardware and software tehniques are required for a single procssor

impl~aon of a Red Processing System. Some of the requirements include:

Information hiding and Ada Package dednitions should be used to logicaLly isoLate

Red and Black processing rouurzns

* Physically separate Red and Black memory should be utlized in the system

* The supervisor stae of the processor should be used t enable Red R.-M operaons.

Only the Red darn handling package should run in the supervisor mode.

Red data parameters should be passed by address and not by value to prevent Red

data form being placed in Black memory

• lnupa and multi-tasking should not be used in secure systems.

* Care should be takem to use a hamming distance of 2 or more for all iop counters

and boolen fmcdon.

Processor self-ues should be performed to verify proper processor operation prior to

hadlin Red data.

9

For a single proc m r implzuencuon of a Red Prcssing System. Ada provdes enough of
t nuoc mquired for a high order language (mactine code insertons, inormacon biding and

packap congru=) in order to impienen a secure single p==r design for th Red Pocesng" .

econ of an :ypdcn sim=
This paer us: only somne of t technique winch =n be used when denimn secure sys tes.

In Swenl. ft secuy level of t sysm will dic=e which methods am appliceble and which

method- am not.

10

POSITION PAPER

PARTIAL VERIFICATION --

A PRACTICAL APPROACH Trtin Mariecta Information
& Communications Systems

P.O. Box 1260
Denver, CO 80201-1260

1. Concept

Although verification technology has existed in the research
community for many years, the principal use has been limited to
exercises chat formally prove software correct. Vider acceptance
has been inhibited by the perception chat the effort involved in
proving software correct can be orders of magnitude greater than
the effort to deveation
process to the consideration of selected properties. The
existing technology allows one to define properties of a piece of
software and formally specify, through assertions within an
annotation system, such properties. The effect of such a process
is to use verification technology, in the statistical sense, co
disprove the hypothesis chat the intended use of a piece of
software is consistent with a specified set of conditions. As
with any statiscical approach, one cannot prove that a piece of
sof warmencally cests and verifies chat
the sofcware is not incorrectly used, one builds more confidence
that the software is, indeed, correctly used. In such a concaxt,
the use of verification technology is practical and economically
feasible.

An annotation system used in this manner is an example of the use
of a formal method. The motivating property of a formal method
that is implicit in this approach is the production of formal
descriptions that can be -*ad and interprecad by software tools.
High ordeable specifications. Thus
another benefit of this approach is that it leads co the
formation of an executable specification langauge.

2. Application of the Concept

A partial verification approach based upon Ada as the
implementation language can be developed from existing cools.
Such cools include an Ada compiler, Anna as the annotation
language, and the tool set developed for Amna.

The concept can be applied to a library of appropriately
annotated Ada code modules, so chat, when a particularaappropriace concex=. The
appropriate annotations are
assertions. When the Anna cools are employed in the compilation
process, these assertions generate code to raise an Anna
excepcion, ac run time, if an accempe is made to use the module
in an incorrect concext.

By concencracing on annotations that are contained within the
library modules, the problem that program developers find
annotations difficult to develop is alleviated. A consequence of
this approach is that the use of annotations does not buonstraincs on the Ada
model chat inhibit or enhance portabilitcy.
:n this respect, we can investigate how to identify design
choices, by Ada compiler imDlemencors, chat affect the
portability of code.

Similarly, we can annotate design choices by hardware designers
chat affect the portability of Ada code, and thereby avoid
incorr-ec- use of Ada softwjare modules dependent on a missing
hardware design feature.

The objective of this use of annocacion is to capture information
and thus be able to derive confidne
architecture.

3. Lcamples

The use of annotation adds integrity and security to sof---are
that contains the following types of modules:

a. An ,-lemencary function, such as the Sine
function, where a fast version devoid of
range reduction could be annotated and used
in certain contexts.

b. A subprogram that is applicable only to a
numeric subcype thac, given the language type
model, is noc expressible excep by
annotation. For as byte order. A
desired abstraction, most significant byte,
can be annotated, while the program ng
lang age permi.s only .he abscraction, low-
numbered or high-numbered byte. The
correspondence becween dhe desired
abstraction and .he abstcrac ion permit ed by
.he programming language is machine
dependent.

d. An operacing system dependenrcy, such as a
naming convention thac i.ac-s dhe source
code.

APPENDIX B

ANALYSIS OF CATALOG OF INTERFACE FEATURES AND OPTIONS (CIFO)
(Not Part of the Workshop Outputs)

The analysis summarized in this appendix resulted from an evening meeting that was not
part of the workshop. This appendix was made available for informational purposes to
the workshop participants. To obtain a copy of Appendix B, contact:

Fred Maymir-Ducharme, Ph.D.
Chair, ARTEWG Security Task Force
liT Research Institute
4600 Forbes Boulevard
Lanham, MD 20706

Telephone: (301) 731-8894

B-1

APPENDIX C
PARTICIPANTS

C-1

Dock Allen
Control Data Corporation
H06539
P.O. Box 609
Bloomington, MN 55440

James P. Alstad
Hughes Aircraft Company
Support Software Department
P.O. Box 92428
Bldg. R1i, MS 10046
Los Angeles, CA 90009

Mary S. Armstrong
liT Research Institute
4600 Forbes Blvd.
Lanham, Maryland 20706

Edward Beaver
Westinghouse ESG
P.O. Box 746
M.S. 5370
Baltimore, Maryland 21203

George Buchanan
lIT Research Institute
4600 Forbes Blvd.
Lanham, Maryland 20706

Paul M. Cohen
Martin Marietta Information
& Communkations Systems
P.O. Box 1260 MS XL1640
Denver, CO 80201-1260

Micha Diaz
Motorola GEG
MS H 1101
8201 East McDowell Road
Scottsdale, Arizona 85252

C-2

Douglas Ferguson
Westinghouse ESG
P.O. Box 746
M.S. 5370
Baltimore, Maryland 21203

Clareance "Jay" Ferguson
National Security Agency
9800 Savage Ro.d
Fort George G. Meade, Maryland 20755-6000

Edward Gallagher
US Army CECOM
AMSEL-RD-SE-AST-SS
Fort Monmouth, NJ 07703

Steve Goldstein
liT Research Institute
4600 Forbes Blvd.
Lanham, Maryland 20706

Jeffrey L Grover
Manager, LHX-PMO (GTRI)
ERB/Rm 173
Georgia Tech Research Institute
Atlanta, Georgia 30332

Mark Kraieski
MCAir/LHX
5000 E McDowell
Mesa, AZ

Sue LeGrand
Planning Research Corp.
Suite 200
2200 Space Park Drive
Houston, Texas 77058

C-3

Nina Lewis
Unisys Corporation
Deense Systems
5151 Camino Ruiz
Camanillo, CA 93010

Ann Marmor-Squires
TRW
Federal Systems Group
2750 Prosperity Avenue
Fairfax, Virginia 22031

Fred Maymir-Ducharme, Ph.D.
lIT Research Institute
4600 Forbes Blvd.
Lanham, Maryland 20706

John McHugh, Ph.D.
Computational Logic, Inc.
3500 Westgate Drive, Suite 204
Durham, North Carolina 27707

John A. Perkins
Dynamics Research Corporation
Systems Division
60 Frontage Road
Andover, Ma 01810

Charles W. McKay, Ph.D.
Software Engineering Research Center
High Technologies Lab
2700 Bay Area Blvd.
Houston, TX 77058-1068

Captain Robert Pierce
AFCSC/SRVC
Bldg. 2012
San Antonio, Texas

C-4

Richard Powers
Texas Instruments Defense Systems
and Electronics Group
P.O. Box 869305
M/S 8503
Piano, Texas 75086

Ken Rowe
National Computer Security Center
9800 Savage Road
Ft. George Meade, Maryland 20755-6000

Jonathan C. Shultis, Ph.D.
Incremental Systems Corporation
319 South Craig Street
Pittsburgh, PA 15213

William R. Worger
Motorola, GEG
8201 E. McDowell Road
P.O. Box 1417
Scottsdale, AZ 85252

C-5

